
Eliciting Programming Challenges Faced by Developers
with Visual Impairments: Exploratory Study

Khaled Albusays
Computing and Information Sciences Program

Rochester Institute of Technology
Rochester, NY 14623
kla3145@rit.edu

Stephanie Ludi
Software Engineering Department
Rochester Institute of Technology

Rochester, NY 14623
salvse@rit.edu

ABSTRACT
Without understanding the programming difficulties faced
by developers with visual impairments, the research commu-
nity cannot begin to work on effective solutions to overcome
these potential problems. This paper will describe our ini-
tial empirically based study to identify the problems blind
software developers face. We analyzed 69 survey responses
with blind developers in an effort to identify the aspects
that are indeed a challenge to software development. The
results indicate a number of difficulties, workarounds, and
basis requirements that will serve as domain and stakeholder
understand.

CCS Concepts
•Human-centered computing → User centered de-
sign; •Social and professional topics → Assistive tech-
nologies;

Keywords
Accessibility; Elicitation; Programmers; Visual Impairment;
Programming Challenges; Blind Programmers

1. INTRODUCTION
The unstated assumption by industry and academia re-

garding software developers is that they are sighted. While
sighted developers are able to quickly develop code, blind de-
velopers can face difficulties in programming activities [2].
The problem is that developers rely on the visual presen-
tation of the code displayed within the Integrated Devel-
opment Environments (IDEs). This programming software,
which has features that require sight, presents obstacles for
developers with visual impairments.

A screen reader is a common tool used by blind individ-
uals to access information on the computer displays. The
software was designed to present information displayed on
the screen verbally, assuming that the software or the web-
site is designed to accommodate the screen reader software.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CHASE’16, May 16 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4155-4/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2897586.2897616

In the case of programming, a screen reader reads system
menus, dialog boxes, tree views, as well as provides access
to other system features. The software was designed in linear
fashion that reads code one line at a time preventing blind
developers from getting an overview of the entire code.

Our research is focused on developing tools to support
blind programmers and students in the field of computer
science. To initiate the process, we are working to under-
stand the user population, as well as their needs, challenges,
and strategies in terms of programming and related soft-
ware engineering tasks. The process of elicitation was care-
fully designed and revised in order to accommodate both the
users and the authors. We sought to answer the following
questions about programming challenges faced by develop-
ers with visual impairments:

1. What are the popular IDEs and programming languages
that blind developers use?

2. What assistive tools do blind developers use when pro-
gramming?

3. What are the difficulties faced by blind developers when
developing code?

4. How do blind developers use workarounds to solve pro-
gramming challenges?

2. BACKGROUND AND RELATED WORK
Currently, the research that highlights difficulties faced by

blind developers is limited. Mealin et al. [3] conducted an
interview study with eight blind developers who have dif-
ferent level of experiences to uncovered programming chal-
lenges. The interview results indicated that several blind
developers do not use tools and features built into the IDEs.
It is unclear if they are unaware of the variety of tools offered
within the IDEs, find the tools to be too complex, or if the
tools were not easily accessible. In our study, we attempted
a more detailed study of the programming difficulties en-
countered by 69 blind developers.

There have been previous efforts aimed at creating acces-
sible tools for individuals with visual impairments. Stefik et
al.[6] created Sodbeans, a programming IDE that relies on
using audio cues to convey information to developers who
are blind. The IDE was built to help blind individuals learn
how to program using audible cues in browsable hierarchi-
cal manner. We believe this approach could be applied to
any assistive tools to help blind developers understand and
navigate more efficiently in IDEs. The authors of Sodbeans

2016 9th International Workshop on Cooperative and Human Aspects of Software Engineering

 82

2016 9th International Workshop on Cooperative and Human Aspects of Software Engineering

 82

2016 9th International Workshop on Cooperative and Human Aspects of Software Engineering

 82

Authorized licensed use limited to: The University of Toronto. Downloaded on July 23,2020 at 15:00:13 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1145/2897586.2897616

did not evaluate the efficiency based on the APL, but rather
on the student’s ability to master the concepts of program-
ming. The authors found that non-speech audio was very
helpful and students were able to understand the majority
of the cues. Vickers et al. [7] also confirmed the usefulness
of auditory cues by sighted developers and how it can help
find bugs.

Stefik et al. explored the usability of audio cues to show
the lexical scoping relations between each statement in the
program [5]. The relationship between statements was found
to be dynamic, and different cues were played when a change
in scope was detected. It seems important to consider the
use of short cues and how to integrate them into the IDEs
via an assistive plug-in.

Baker et al. [2] created an Eclipse plug-in called Struc-
tJumper to help blind developers quickly understand and
navigate through large amounts of code. Within this plug-in
are two features (TreeView and Text Editor) which are used
to create a hierarchical tree based on the nesting structure
of Java. It is the same concept used by Smith et al. [4] to
help blind developers recognize code in hierarchical manner
with the use of the tree-like structure. Our future research
on code navigation will seek to expand on this work, but
only after a more in-depth exploration of code navigation
difficulties. We will also collect a list of user requirements
and evaluate existing navigation tools.

3. METHODS

3.1 Survey Design
We created an initial survey and conducted a pilot test in

order to validate our questionnaire. Our pilot testers were
experienced developers (+5 years) with no vision disabili-
ties. The survey design was modified upon their comments
and feedback. For example, the survey wording was changed
to more familiar terms as well as adding other common pro-
gramming languages to multiple questions.

We estimated the completion time of the survey at 10
minutes. There were 15 questions in our survey, 11 multi-
ple choice, 3 open-ended, and 1 Likert Scale [1]. We defined
the survey questions to inquire about how programming was
learned, level of experience, visual acuity, visual perception,
challenges, workarounds, assistive tools, and the type of de-
velopment tools.

3.2 Sampling
In this work, we needed to find developers with visual

impairments. As this is a subgroup of a limited and geo-
graphically dispersed population, we decided to use a snow-
ball sampling technique. We decided to contact individuals
who met the criteria and asked them to forward the sur-
vey to those who possess the necessary traits. The poten-
tial respondents were contacted via email invitations as well
as posts in ”blind individuals” groups on Google Hangouts,
LinkedIn, and AppleVis (a community for blind and low-
vision users of Apple’s products).

3.3 Procedure and Response Rate
In order to eliminate geographic restrictions, we decided

to set up an online survey through the Rochester Institute
of Technology survey system. The system was designed to
encompass all disabilities that affect access to the survey
system. Participant response rates could not be calculated

as we could only monitor the total number of responses sub-
mitted. The actual time for the survey completion could
not be measured. The survey was open for more than two
months.

3.4 Participants
The survey was taken by a total number of 69 partic-

ipants, all of whom were blind developers. Nearly all 62
(89.86%) of the participants were male, 6 (0.09%) were fe-
male, and 1 participant decided not to answer. The mean
age in our sample was 35.39 years, with a standard devia-
tion of 13.55 years. The lowest age captured in our sample
was 18 where the highest age of an individual was 68. Our
survey sample showed variation in the visual acuity among
the 69 respondents. About 29 (42.02%) of the participants
were totally blind, followed by 25 (36.23%) who had light
and shadow sensitivity, 12 had vision but needed corrective
lenses (17.39%), 2 had macular degeneration (0.03%), and 1
was totally blind in one eye (0.01%). In regards to the visual
perception of the 69 respondents, 43 had light perception, 26
had shadow perception, 22 had movement perception, and
16 had color perception.

4. RESULTS
The results section has been organized by the developers’

background, tools used, assistive technology, and the chal-
lenges faced in software development.

4.1 Developer Background
Participants were asked to clarify the method used to

learn programming. About 40 (57.97%) were self-taught,
28 (40.58%) attended schools, and 1 (0.01%) respondent did
not answer the question.

We also asked participants to rate their levels of expertise
in various programming languages. Table 1 shows respon-
dents’ experiences in various programming languages. The
use of Python was expected as many undergraduate com-
puter science use Python. It also has gained wider popular-
ity among many STEM disciplines. The use of Python itself
is interesting given that blind developers can dynamically
inspect and change their programs.

4.2 Development Tools and Platforms
We asked participants to indicate their development tools,

development platforms, and the target platforms for their
work. About 49 (71.01%) use the Windows environment
to write code, where 15 (21.74%) use Mac OS X, and 14
(20.29%) use Linux. Less common environments included
IBM Mainframe, Motorola, micro-controllers embedded C,
and Unix. In regards to the target platforms, 39 (56.52%)
of the respondents developed applications that run on Mi-
crosoft. 13 (18.84%) people developed applications for Linux,
10 (14.49%) for iOS, 7 (10.14%) for Mac OSX, and 5 (0.07%)
for Android. In terms of the development tools used, the
most preferred editor is Eclipse (31 people, or 44.92%), fol-
lowed by Microsoft Visual Studio (28 people, or 40.58%),
Xcode (17 people, or 24.64%), Emacs (3 people, or 0.04%),
and Netbeans (2 people, or 0.02%). Eclipse was expected
due to its common adoption in undergraduate Computer
Science programs, as well as it being open source.

4.3 Assistive Technology

838383

Authorized licensed use limited to: The University of Toronto. Downloaded on July 23,2020 at 15:00:13 UTC from IEEE Xplore. Restrictions apply.

Table 1: Level of expertise in various programming languages

Level of Expertise
List of Programming Languages

Java C C# C++ Objective-c Python Ruby Perl JavaScript Php

None 22 16 30 22 42 22 44 38 20 26

Novice 16 15 16 16 11 18 11 14 17 13

Intermediate 17 18 8 16 4 16 3 5 22 15

Expert 12 14 9 9 5 9 3 5 7 10

The use of software and hardware-based assistive technol-
ogy is integral to programming and related tasks. The use
of a screen reader (e.g. VoiceOver, JAWS) is very common
among participants, whereas several of the blind developers
prefer to use refreshable Braille display when programming.
A refreshable Braille display, a hardware device, translates a
single line of text that is displayed on screen to a single line
of Braille that can be ready by touch. Braille displays are
very expensive and require the user to know Braille, which
can be a limitation to blind developers.

In regards to the types of aids that respondents use for as-
sistance with programming, all of the respondents indicated
that they do utilize Screen Reader (69 people, or 100%).
Braille Display is used by 30 people (43.48%), magnification
software is used by 7 people (10.14%), and large fonts used
by 6 people (8.70%).

4.4 Open-Ended Responses
The survey contained three open-ended questions designed

to elicit responses regarding the use of text-editors, chal-
lenges, and workarounds. To analyze these results, we ap-
plied a coding scheme categorized by: limited accessibility
aids in IDEs, code navigation, diagrams, debugging and user
interface layout, seeking sighted assistance, and workaround
techniques.

4.4.1 Limited Accessibility Aids in IDEs
Many participants reported that accessibility in IDEs is

poor and limited. Participants P16 and P53 indicated that
the use of a text-editor is necessary since IDEs are very
complex environments. The following are some responses
from participants:

”Using a text editor is completely necessary be-
cause accessibility for IDE’s is so poor.” (Partic-
ipant 16)

”Accessibility issues in IDEs like visual studio.”
(Participant 53)

While participant P5 indicated that certain parts of the
IDEs are difficulties to use due to unstable screen reader:

”Stability issues with the IDE’s and the screen
readers. Certain parts of the IDE’s being more
difficult to use than my sighted counterparts have
to deal with.” (Participant 5)

4.4.2 Code Navigation
Writing code requires moving or navigating through it in

order to revise it or to track down mistakes. Movement
through code using arrow keys is not enough due to the lay-
out and the structure of code. Because of these difficulties,

the need for an effective solution to overcome code naviga-
tion challenges is crucial. Several participants tried to over-
come code navigation challenge with the use of scratchpad
and editors. Here are some comments from participants:

”I have another window open to serve as a scratch-
pad (notes to fix things, method/variable names,
etc). Having that separate scratchpad allows me
to avoid losing my place in the code if I need to
go look something up.” (Participant 1)

”Some text editors allows you to jump between
the start and end of the block you are currently
in.” (Participant 44)

Participant P36 uses a screen reader to listen to the code
and Braille Display for more detailed information:

”I find that I listen to code with the screen reader
audio, then if I want more detail, including punc-
tuation, I use the Braille display. ” (Participant
36)

We believe detailed follow-up is needed to better under-
stand how navigation occurs in different languages, environ-
ments, and with various skill levels.

4.4.3 Diagrams
Software developers need to be able to access various di-

agrams during the development process. Providing textual
descriptions for diagrams in a timely manner is challeng-
ing. Several participants discussed the problem of accessing
UML diagrams and the need for UML assistive tools. Some
of their comments include:

”It isn’t easy to diagram, I have to keep things
in my head when I’m designing program flow.”
(Participant 1)

Where other participant reported that diagrams does help
show how certain things work before coding.

”It’s not possible to look at class diagrams to have
a quick idea of how some stuff you did not code
works.” (Participant 7)

4.4.4 Debugging and User Interface Layout
Features in many IDEs include the support for debug-

ging and also user interface layout. Respondents difficulties
accomplishing both debugging and UI layout. Developers
indicated the use of basic debugger utilities such as break-
points, stepping through code, and print-f. Participants also
said that debugging tools are difficult to use. A sample of
comments includes:

848484

Authorized licensed use limited to: The University of Toronto. Downloaded on July 23,2020 at 15:00:13 UTC from IEEE Xplore. Restrictions apply.

”The challenges I face more often concern inter-
acting with errors and warnings and consulting
documentation or tooltips.” (Participant 1)

”Debugging and interface design need visual de-
velopment tools and they are not accessible and
compatible with screen readers.” (Participant 12)

4.4.5 Seeking Sighted Assistance
Many respondents indicated the need to seek out help

from sighted developers for certain tasks. Several respon-
dents feel embarrassed when working with other sighted
teammates. For example, participants P10 and P49 rely
heavily on the assistance of a sighted person to help them
overcome some programming issues.

”Asking a sighted colleague for assistance.” (Par-
ticipant 10)

”Many times I use the assistance of a sighted per-
son.” (Participant 49)

4.4.6 Workaround Techniques
In the elicitation process, a focus on challenges can result

in the omission of positive information (e.g. workarounds
that are used to complete tasks). Many respondents pre-
sented a myriad of workarounds for diverse development
tasks. For example, P7 found an alternative way to access
UML digammas. However, they did not provide detailed in-
formation on the approach used. Other comments include:

”I have found alternative ways to access UML.
A blind person to perform a software engineer-
ing job must know their access tech in side out.”
(Participant 7)

Participant P16 uses a text editor to overcome the com-
plexity of IDEs.

”I have met the challenges by using a text editor
to write code, attempting to run the code, and
continuing to edit and revise until I achieve the
result I want.” (Participant 16)

5. LIMITATIONS
Although our study achieved its goals, we recognized that

there are some unavoidable limitations. The study is lim-
ited by the snowball sampling technique, which resulted in
uneven participant categories. The technique was used in
order to maximize the number of responses in the time al-
lotted from a population that is challenging to recruit.

6. CONCLUSION
In this work, we explored the challenges faced by de-

velopers who are blind. The goal was to understand the
blind developers’ programming problems as well as their
workarounds to overcome these challenges. Some of the re-
sults were expected such as the lack of accessibility in IDEs
as well as the use of a screen reader. We were surprised to
see that blind developers use text editors as preferred tools
to write code. It is not clear whether blind developers are
unaware of the variety of features offered within the IDEs or
find them difficult to use. For example, some participants

noted that Eclipse or Visual Studio were not accessible while
other respondents did use these tools.

We have discussed several implications, but further inves-
tigation is needed to determine what our conclusions can be
generalized. For example, the survey analysis indicated the
difficulty of code navigation where blind developers find it
hard to navigate quickly through large amounts of code. The
participants did not express sufficient details to such a prob-
lem and to generate requirements. A further study is needed
to illuminate this particular subject with a well-defined user
profile. We aim to conduct observational and interview stud-
ies with blind developers in a remote setup (using Skype or
Google Hangouts). Thus, the geographical distribution can
be overcome while providing a representational sample of
computer science students as well as professional software
developers for the needed subject.

Acknowledgment
We would like to thank our participants as well as our anony-
mous reviewers for their suggestions and feedback.

7. REFERENCES
[1] Eliciting programming challenges for developers with

visual impairments survey. https://people.rit.edu/
kla3145/Research/pdf/BlindProgrSurvey.pdf. Accessed:
2016-02-29.

[2] C. M. Baker, L. R. Milne, and R. E. Ladner.
Structjumper: A tool to help blind programmers
navigate and understand the structure of code. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, pages
3043–3052. ACM, 2015.

[3] S. Mealin and E. Murphy-Hill. An exploratory study of
blind software developers. In Visual Languages and
Human-Centric Computing (VL/HCC), 2012 IEEE
Symposium on, pages 71–74. IEEE, 2012.

[4] A. C. Smith, J. S. Cook, J. M. Francioni, A. Hossain,
M. Anwar, and M. F. Rahman. Nonvisual tool for
navigating hierarchical structures. In ACM
SIGACCESS Accessibility and Computing, number
77-78, pages 133–139. ACM, 2004.

[5] A. Stefik, C. Hundhausen, and R. Patterson. An
empirical investigation into the design of auditory cues
to enhance computer program comprehension.
International Journal of Human-Computer Studies,
69(12):820–838, 2011.

[6] A. M. Stefik, C. Hundhausen, and D. Smith. On the
design of an educational infrastructure for the blind and
visually impaired in computer science. In Proceedings of
the 42nd ACM technical symposium on Computer
science education, pages 571–576. ACM, 2011.

[7] P. Vickers and J. L. Alty. When bugs sing. Interacting
with Computers, 14(6):793–819, 2002.

858585

Authorized licensed use limited to: The University of Toronto. Downloaded on July 23,2020 at 15:00:13 UTC from IEEE Xplore. Restrictions apply.

https://people.rit.edu/kla3145/Research/pdf/BlindProgrSurvey.pdf
https://people.rit.edu/kla3145/Research/pdf/BlindProgrSurvey.pdf

