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Algorithms increasingly govern societal functions, impacting multiple stakeholders and social groups. How 
can we design these algorithms to balance varying interests in a moral, legitimate way? As one answer 
to this question, we present WeBuildAI, a collective participatory framework that enables people to build 
algorithmic policy for their communities. The key idea of the framework is to enable stakeholders to construct 
a computational model that represents their views and to have those models vote on their behalf to create 
algorithmic policy. As a case study, we applied this framework to a matching algorithm that operates an 
on-demand food donation transportation service in order to adjudicate equity and efficiency trade-offs. 
The service's stakeholders-donors, volunteers, recipient organizations, and nonprofit employees-used the 
framework to design the algorithm through a series of studies in which we researched their experiences. 
Our findings suggest that the framework successfully enabled participants to build models that they felt 
confident represented their own beliefs. Participatory algorithm design also improved both procedural fairness 
and the distributive outcomes of the algorithm, raised participants' algorithmic awareness, and helped 
identify inconsistencies in human decision-making in the governing organization. Our work demonstrates the 
feasibility, potential and challenges of community involvement in algorithm design. 
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Computational algorithms increasingly take on governance and management roles in administra­
tive and legal aspects of public and private decision-making [26, 27, 47, 79]. In digital platforms, 
bureaucratic institutions, and infrastructure, algorithms manage information, labor, and resources, 
coordinating the welfare of multiple stakeholders. For example, news and social media platforms 
use algorithms to distribute information, which influences the costs and benefits of their services 
for their users, news sources, advertisers, and the platforms themselves [39]; on-demand work 
platforms use algorithms to assign tasks, which affects their customers, their workers, and their own 
profits [41, 51, 72]; and city governments use algorithms to manage police patrols, neighborhood 
school assignments, and transportation routes [67, 76]. 

These governing algorithms can have a substantial impact on our society; they can enable 
efficient, data-driven decisions at massive scale, but they also risk invisibly perpetuating socially 
undesirable or erroneous decisions. Recent real-world cases suggest that algorithmic governance 
can lead to compromises in social values and unfairly prioritize a small set of stakeholders' benefits 
at the cost of others' [4, 21, 82]. For example, the objective of the social media curating algorithms 
is to maximize the profits of the company and satisfy the advertisement providers, often at the 
cost of social values such as healthy media consumption and privacy [16]. Algorithms used in 
public assistance automate decisions for efficiency and risk having disparate impacts on the groups 
of people affected by the decisions [4]. When algorithms are designed without considering a 
community's needs, as in the case of Boston's bus scheduling system, they may receive pushback 
from the community and ultimately not be adopted [82]. 

Emerging work has called for greater involvement of stakeholders and affected communities in 
the development of algorithmic systems. These projects have sought to understand the public's 
expectations of moral behaviors [14, 54, 60] and varying concepts of fairness [48, 50, 84], as well 
as stakeholders' needs and requirements [2, 87] around Artificial Intelligence (AI) systems; yet 
translating the results into actual algorithms is difficult, as these studies have often relied on 
hypothetical moral dilemmas or collected qualitative expectations and opinions that developers 
and designers need to interpret in order to build the algorithm. 

Our vision is to empower people to design algorithmic governance mechanisms for their own 
communities. We argue that this participatory algorithm design process is a step toward creating 
algorithmic governance that is effective yet also moral. In traditional participatory governance, 
stakeholder participation in policy-making improves the legitimacy of a governing institution in a 
democratic society [36, 38].1 Participating in service creation has also been shown to increase trust 
and satisfaction, thereby increasing motivation to use the services [8]. In addition, participation 
can increase effectiveness. For certain problems, people themselves know the most about their 
unique needs and problems [36, 56]; participation can help policymakers and platform developers 
leverage this knowledge pool. Finally, stakeholder participation can help operationalize moral 
values and their associated trade-offs, such as fairness and efficiency [36]. Even people who 

1By "legitimacy;' we refer to Weber's notion that "persons or systems exercising authority are lent prestige" [81]. A policy or 
action is legitimate when constituents have good reason to support it [37]. In western democratic societies, the legitimacy 
of governing systems is often established through the public practice of democracy that seeks to earn the consent of the 
governed by soliciting their input, often through elections, to influence government and public policy. 

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. CSCW, Article 181. Publication date: November 2019. 

https://doi.org/10.1145/3359283


� 

§ 

8 

§ 

Recommendation 2 

[ liil 0 ... l 

Recommendation 3 

Recommendation 1 

[liil�RRR][w�liil] 8 [o liil RRR l 

1 § 
8

8 § 
----;,> 

liil MR w ... 0 
+2 +5 +1 +1 +5 liilt 8 

Individual model Collective Explanation 

building aggregation & decision support 

WeBuildAI: Participatory Framework for Algorithmic Governance 181:3 

Fig. 1. The WeBuildAI framework allows people to participate in designing algorithmic governance policy. A 

key aspect of this framework is that individuals create computational models that embody their beliefs on 

the algorithmic policy in question and vote on the individual's behalf. 

agree wholeheartedly on certain high-level moral principles tend to disagree on the specific 
implementations of those values in algorithms-the objectives, metrics, thresholds, and trade­
offs that need to be explicitly codified rather than left up to human judgment. 

Enabling stakeholder participation in algorithmic governance raises several fundamental research 
questions. First, what socio-technical methods will effectively elicit individual and collective beliefs 
about policies and translate them into computational algorithms? Second, how should the resulting 
algorithms be explained so that participants understand their roles and administrators can make 
decisions using the algorithms? How does participation influence participants' perceptions of 
and interactions with algorithmic governance? Finally, how does the resulting collectively-built 
algorithm perform? 

In order to address these research questions, we propose a framework called WeBuildAI that 
enables people to collectively design an algorithmic policy for their own community (Figure 1).2 

By "design;' we mean having the community members and stakeholder themselves define the 
optimization goals of the algorithms, the benefits and costs of the algorithmic governance decisions, 
and the value principles that they believe their community should embody and operate on. The 
key aspect of this framework is that individuals create computational models that embody their 
beliefs on the algorithmic policy in question,3 and then these models vote on their individuals' 
behalf. This works like a group of people making a decision together: computational models of 
each individual's decision-making process make a collective choice for each policy decision. The 
individual models rank possible alternatives, and the individual rankings are then aggregated 
via the classic Borda rule. The resulting algorithmic recommendations are explained to support 
administrative decision-makers. 

As a case study, we applied this framework to develop a matching algorithm that distributes 
donations through collaboration with 412 Food Rescue, a nonprofit that provides an on-demand 
donation transportation service with volunteer support. The algorithm matches donors with 

2We define "community" according to the Merriam-Webster dictionary as a "unified body of individuals;' particularly a 
group linked by a common interest or policy.
3By "belief," we mean a "positional attitude;' in other words, "the mental state of having some attitude, stance, take, or 
opinion about a proposition" [70]. 
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recipient organizations, determining who receives donations and how far volunteers need to drive 
to deliver donations. We solicited stakeholder participation to adjudicate the tradeoffs involved 
in the algorithm's design, balancing equity and efficiency in donation distribution and managing 
the associated disparate impacts on different stakeholders. Over the course of a year, we had the 
stakeholders-donors, recipient organizations, volunteers, and the 412 Food Rescue staff-use the 
WeBuildAI framework to design the matching algorithm, and researched their experiences through 
a series of studies. The findings suggest that our framework successfully enabled participants 
to build models that they felt confident represented their own beliefs. In line with our original 
goals, participatory algorithm design also impacted both procedural fairness and distributive 
outcomes: participants trusted and perceived as fair the collectively-built algorithm, and developed 
an empathetic stance toward the organization. Compared to human dispatchers, the resulting 
algorithm improved equity in donation distribution without hurting efficiency when tested with 
historic data. Finally, we discovered that the individual model-building process raised participants' 
algorithmic awareness and helped identify inconsistencies in human managers' decision-making 
in the organization, and that the design of the individual model-building method may influence the 
elicited beliefs. 

Our paper makes three contributions. First, we offer a framework and methods that enable 
participatory algorithm design, contributing to emerging research on human-centered algorithms 
and participatory design for technology. Second, through a case study with stakeholders in a real­
world nonprofit, we demonstrate the feasibility, potential, and challenges of community involvement 
in algorithm design. Finally, our work provides insights on the effects of procedurally-fair algorithms 
that can further understanding of algorithmic fairness. 

2 GOVERNING ALGORITHM DESIGN AND PARTICIPATION 

Our framework draws from social choice and participatory governance literature to enable partici­
patory algorithm design. In this section, we first lay out normative choices in algorithm design. We 
then review and identify gaps in participatory design literature and emerging work to introduce 
stakeholder participation in algorithm design. Finally, we discuss how we leveraged participatory 
governance literature to inform our framework design. 

2.1 Normative Choices in Algorithm Design 
In line with Aneesh's definition of"algocracy;' when "authority becomes embedded in the technol­
ogy itself" [3] rather than traditional forms of governance, and Danaher's elaborations, we define 

"governing algorithms" as algorithms that "nudge, bias, guide, provoke, control, manipulate and 
constrain human behaviour" [27]. All algorithm design choices cannot be addressed by a purely 
technical approach [ 42, 83]; particularly in governing algorithms, some design choices require a 
normative decision, as they affect multiple stakeholders and need to codify critical social values 
and associated tradeoffs. We describe three such design choices below. 

First, increasingly more research has investigated computational techniques to encode social and 
moral values in algorithms, yet many still rely on fundamental measures and algorithmic "objective 
functions" that humans must define. Defining these terms is complex. Fairness, for example, broadly 
defined as treating everyone equally, has multiple definitions and theoretical roots. In prior work, 
fairness has been defined as equitable distributive outcomes and just, unbiased, non-discriminatory 
decision-making processes [11]. Fairness is an important value in governing algorithms as al­
gorithms can perpetuate unfair treatment of different populations or stakeholders [27, 35, 85]. 
Emerging work develops computationally fair algorithms [ 17, 34], yet applying these techniques 
to real-world settings still requires human judgment. For example, individual fairness, or treating 
similar individuals similarly, requires a definition for "similar individuals" [32]. 
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Second, multiple social values and objectives cannot be satisfied to the same degree, which 
necessitates making tradeoff decisions. For example, all fairness principles cannot be guaranteed 
simultaneously [22, 46), so a human decision-maker must determine which fairness definitions an 
algorithm should use. Similarly, operational efficiency and fairness are often competing values in 
modern capitalist democracies [ 61]. Algorithms that aim to achieve both require human judgments 
about how to balance the two, because there is no fundamental "right" balance and one cannot be 
determined purely through optimization [9]. 

Finally, these definitions and values are context-dependent. Recent empirical work on perceptions 
of"fair" algorithms suggests that different social groups believe in different fairness principles, and 
even algorithms that embody a fairness principle may not be perceived as fair if the implemented 
principle is not in accordance with the affected group's beliefs [ 48). For example, some groups in the 
study preferred random allocation that treated everyone equally, and did not consider individual 
differences to be relevant to task allocation. Other groups desired equity-based allocation, in which 
the tasks are allocated to satisfy everyone's preferences to a similar degree. Some other groups 
wanted to consider both preferences and task completion time as fairness factors, so that people 
work for a similar amount of time and their preferences are satisfied similarly. These findings 
suggest people believe in epistemically different fairness principles or desire varying ways of 
operationalizing fairness principles. Real-world examples also suggest that algorithmic software 
will fail to be adopted if it uses features or objective functions that do not fit the context of the 
affected community. For example, a "fair" algorithmic school start time scheduling software in 
Boston received pushback from the community and was ultimately not adopted, because the 
policymakers' and developers' efforts to decrease racial disparities did not consider important 
values and constraints of the stakeholders [82). This body of work suggests that fairness principles 
must be context-specific, and that algorithmic systems should embody fairness notions derived 
from the community. 

These normative choices in algorithm design are fundamental; how do we understand and 
formalize context-dependent values? Who should determine these important values and tradeoffs 
in governing algorithms, and how? Our approach to these questions is inspired by the long line of 
research on participatory design. 

2.2 Gaps in Participatory Design and Human-Centered Research on Al 
Participatory design originated in Scandinavia in the 1960s with the intention of involving workers 
in planning job design and work environments. Participatory design was subsequently adopted in 
the fields of human-computer interaction and engineering [59, 80), and researchers and designers 
have included "end-users" in design activities for computing systems in a wide range of domains 
such as workspaces [13), healthcare [6], and robots [30). In participatory design, the researchers and 
users of a technology share power and control in determining its technological future [15, 59, 80), 
so that the stakeholders or populations that the technology will influence have a say in the resulting 
design, and the technology can better reflect their needs, values, and concerns. More recently, 
several scholars have argued that one needs to be more cognizant of the agency and influence of 
the researchers and designers in "configuring the process participation;' and more critical analysis 
must be done in terms of who initiates participation and who benefits from it [80). 

While participatory design has been applied to diverse forms of technology, the research on 
involving users in the process of designing algorithms or Al is still in its infancy. Rahwan [64) 
argues for "society-in-the-loop;' which stresses the importance of creating infrastructure and tools 
to involve societal opinions in the creation of AI. Emerging work has also started to explore societal 
expectations of algorithmic systems such as self-driving cars [14, 60) and robots [54). This line 
of work offers an understanding of the public's general moral values around AI through thought 
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experiments, but it is difficult to translate them into actual AI technology as they have often been 
done in hypothetical moral dilemma situations. 

Emerging work seeks to understand participants' values with regard to the fairness of actual 
AI products, with the goal of representing these values in the final AI design. For example, Zhu 
et al. proposed Value Sensitive Algorithm Design [87), a five-step design process that starts with 
understanding the stakeholders and ends with evaluating algorithms' acceptance, accuracy, and 
impacts, in the context ofeWikipedia bots. In this process, designers interpret stakeholder opinions 
and make the necessary trade-off decisions. Alvarado and Waern organized a participatory work­
shop for social media curation algorithms in which people were asked to imagine ideal "algorithmic 
experiences" [2]. Lee et al. and Woodruff et al. conducted interview and workshop studies on what 
people think "fair" algorithms are in the contexts of donation allocation [50) and online ads [84). 
Other scholars systematically investigated perceived fairness of algorithmic decisions in hiring [ 47), 
recidivism [31), child welfare services [18), and resource allocation such as task assignment [ 48) 
and goods division [49). 

To our knowledge, however, little work has sought to formalize subjective concepts of fairness. 
Furthermore, while these studies provide us with a better understanding of general public and 
user perceptions of justice and fairness, they do not close the loop on algorithmic developments 
that respond to these concerns. Our work proposes a method for directly involving end-users or 
stakeholders of algorithmic services in determining how the algorithms should make decisions. One 
aspect that differentiates our work is that we offer a tool through which people without algorithmic 
knowledge can directly specify or "sketch" [20) how they would like the algorithm to behave; we 
couple this with a method for aggregating different stakeholders' points of view. 

2.3 Participatory Governance 
Our framework draws on the literature on participatory governance. A first step in participatory 
governance is to determine what governance issues participants will consider and how participation 
will influence final policy outcomes. User groups, or mini-publics [36), can be configured as open 
forums where people express their opinions on policies; focus groups can be arranged for specific 
purposes such as providing advice or deriving design requirements. In full participatory democratic 
governance, citizen voices are directly incorporated into the determination of the policy agenda. 
Our framework focuses on this last form: direct participation in designing algorithmic governance. 
By "direct participation," we mean that people are able to specify "objective functions" and behaviors 
in order to create desirable algorithmic policies. This direct approach can minimize potential errors 
and biases that occur when codifying policy ideas into computational algorithms, which has been 
highlighted as a risk in algorithmic governance [ 45). 

A key aspect of governance is collective decision-making. Our framework builds on social choice 
theory. Social choice theory involves collectively aggregating people's preferences and opinions by 
creating quantitative definitions of individuals' opinions, utilities, or welfare and then aggregating 
them according to certain desirable qualities [71]. Voting is one of the most common aggregation 
methods, in which individuals choose a top choice or rank alternatives, and the alternatives with 
the most support are selected. Social choice theory is typically built on an axiomatic approach, 
formally defining desirable axiomatic qualities and studying voting rules that satisfy them. Indeed, 
the Borda voting rule satisfies a number of such properties, including monotonicity (pushing an 
alternative upwards in the votes should not hurt it) and consistency (if two electorates elect the 
same alternative, their union does too). We adopted a social choice approach specifically because 
our ultimate design outcome is an algorithm. While we know "quantification" has limitations 
in capturing nuances in the real world, quantification is an inevitable step in algorithms as they 
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need quantitative inputs. Social choice theory provides a framework for formally reasoning about 
collective decisions at scale. 

Implementing participation in algorithmic governance requires addressing the following chal­
lenges. First, how can we enable individuals to form beliefs about policies through deliberation 
and express these beliefs in a format that the algorithm can implement? Second, how do we con ­
solidate individuals' models? Finally, how do we explain the final decisions so that people can 
understand the influence of their participation on the resulting policy, and administrators can use 
the collectively-built governing algorithm? In the next section, we describe our framework and 
how it addresses these challenges. 

3 THE WEBUILDAI FRAMEWORK 

Here we lay out the basic building blocks of the WeBuildAI framework, which enables participation 
in building algorithmic governance through a novel combination of individual belief learning, 
voting, and explanation. Our framework design draws on the field of political theory, which 
investigates collective decision-making and effective citizen participation in governance. 

The key idea of the framework is to build a computational model representing each individual 
stakeholder, and to have those models vote on their individuals' behalf. This works like a group of 
people making a decision together: computational models of each individual's decision-making 
process make a collective choice for each policy decision. 

3.1 Individual Belief Model Building 

Building a model that embodies an individual's beliefs on policy gives rise to three challenges. First, 
people need to determine what information, or features, should be used in algorithms. Second, 
the individual needs to form a stable policy that applies across a broad spectrum of situations. 
This process requires people to examine their judgments in different contexts until they reach an 
acceptable coherence among their beliefs, or reflective equilibrium [28, 66]. Third, people without 
expertise in algorithms need to be able to express their beliefs in terms of an algorithmic model. 
We address these challenges by deriving a set of features from people's inputs, and then using both 
bottom-up machine learning training and top-down explicit rule making. 

3.1.1 Feature Selection. The first step is to determine features that people believe should be used by 
the algorithm to make decisions. People's opinions can be solicited through interviews or surveys. 
The derived set of features will be used to construct pairwise comparisons between alternatives, or 
allow people to directly specify weights for each of the features. 

3.1.2 Model Building. We use both machine learning and explicit rule specification. By allowing 
people to use both types of models iteratively, we seek to support deliberation. By building a machine 
learning model via pairwise comparisons, people can develop a policy that works across various 
contexts; by explicitly specifying a policy that they have been implicitly forming, participants can 
consolidate and externalize their beliefs; then by answering new pairwise comparisons questions, 
they can evaluate whether the rules they have in mind work consistently across contexts. 

• Machine Learning Model. To train an algorithm that reflects people's decision criteria, the 
machine learning method uses pairwise comparisons between a pair of alternatives that vary 
along the features derived from the previous step. Pairwise comparisons have been used 
to encourage moral deliberation and reach a reflective equilibrium in determining fairness 
principles [66], and have been used as a way to understand people's judgments in social and 
moral dilemmas in psychology and economics [25]. This method allows people to become 
familiar with different contexts, and develop and refine their beliefs. 
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We utilize random utility models, which are commonly used in social choice settings to 
capture choices between discrete objects [55]. In a random utility model, each participant 
has a true "utility" distribution for each object, and, when asked to compare two potential 
objects, she samples a value from each distribution. For each participant i, we learn a single 
vector /3; such that the mode utility of each potential decision x is µ;(x) = /3;x. We then 
learn the relevant /3; vectors via standard gradient descent techniques using Normal loss. 

• Explicit Rule Model. In this method, participants directly specify their principles and decision 
criteria as used in expert system design [29]. Human-interpretable algorithmic models [86] 
such as decision trees, rule-based systems, and scoring models have been used to allow people 
to specify desired algorithmic behaviors. This approach allows people to have full control 
over the rules and to specify exceptional cases or constraints. Specifically, for each of the 
features, participants can specify scores to express how much the algorithm should weight 
different features. 

3.1.3 Model Selection. Once people build their models using the two methods, we visualize the 
models and show example decisions that each model has made so that people can understand each 
model and select the one that best reflects their beliefs. 

3.2 Collective Aggregation 

Once participants have built their models, the next challenge is to construct a collective rule that 
consolidates the individual models. We address this challenge by leveraging social choice, one of 
the main theories of collective decision-making, which aggregates peoples' opinions according to 
certain desirable qualities [71]. Voting is one of the most common aggregation methods. In voting, 
individuals can specify a top choice or rank alternatives, and the alternatives with the most support 
are selected. In our framework, we use the Borda voting method due to its relative simplicity and 
robust theoretical guarantees in the face of noisy estimates of true preferences, as shown in a paper 
by some of the authors [ 44]. 

The Borda rule is defined as follows. Given a set of voters and a set of m potential allocations, 
where each voter provides a complete ranking over all allocations, each voter awards m - k points 
to the allocation in position k, and the Borda score of each allocation is the sum of the scores 
awarded to that allocation in the opinions of all voters. Then, in order to obtain the final ranking, 
allocations are ranked by non-increasing score. For example, consider the setting with two voters 
and three allocations, a, b, and c. Voter 1 believes that a >- b >- c and voter 2 believes that b >- c >- a, 
where x >- y means that x is better than y. The Borda score of allocation a is 2 + 0 = 2, the Borda 
score of allocation b is 1 + 2 = 3, and the Borda score of allocation c is O + 1 = 1. Therefore, the 
final Borda ranking is b >- a >- c. 

Once stakeholders create their models, the models are embedded in the AI system to represent 
the stakeholders; for each algorithmic decision task, each individual model ranks all alternatives, 
and the ranked lists of all participants are aggregated using the Borda rule to generate the final 
ranked list. 

3.3 Algorithm Explanation and Human Decision Support 
Finally, the ranked recommendations must be explained to stakeholders to communicate how 
their participation has influenced the final policy and supported operational decision-making. 
Communicating the impact of participation can reward people for their effort and encourage them 
to further monitor how the policy unfolds over time. While the importance of communication is 
highlighted in the literature, it has been recognized as one of the components ofehuman governance 
least likely to be enacted [36]. Algorithmic governance offers new opportunities in this regard 
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because the aggregation of individual models and resulting policy operations are documented. A 
new challenge is how to explain collectively-built algorithmic decisions, an area in which little 
prior research has been done. We address this challenge by displaying each recommended option's 
Borda score, its average ranking per stakeholder group, and its "standout" features in order to 
support the administrators enacting the algorithmic policies. 

4 CASE STUDY: MATCHING ALGORITHM FO R DONATION ALLOCATION 

We applied the WeBuildAI framework in the context of on-demand donation matching in collabo­
ration with 412 Food Rescue [1]. 

4.1 Goals of Participation in Matching Algorithm Design 

4.1.1 Organizational Context. 412 Food Rescue is a non-profit that provides a "food rescue" service: 
donor organizations such as grocery and retail stores with extra expiring food call 412 Food Rescue, 
and then 412 Food Rescue matches the incoming donations to non-profit recipient organizations. 
Once the matching decision is made, they post this "rescue" on their app so that volunteers can 
sign up to transport the donations to the recipient organizations. The service's success depends on 
the participation of all stakeholders-a continuous stream of donations, recipient organizations' 
willingness to accept the donations, volunteers' efforts to transport donations, and 412 Food Rescue' s 
operational support and monitoring. The organization has grown successfully for the past few 
years. They have rescued over three million pounds of food and are expanding their model into food 
rescue organizations in four other cities, including San Francisco and Philadelphia. The donation 
allocation policy is at the core of their service operation; while each individual decision may seem 
inconsequential, over time, the accumulated decisions impact the welfare of the recipients, the type 
of work that volunteers can sign up for, and the carbon footprint of the rescues. 

412 Food Rescue wanted to introduce an algorithmic donation allocation system for two reasons. 
First, they currently have a few employees per day, known as dispatchers, manually allocating all 
donations that come in that day. On a busy day, each dispatcher has to manage over 100 donations, 
which is too many, so the organization wants to reduce dispatcher workload. Second, 412 Food 
Rescue wishes to improve equity in their donation distribution. The current donation distribution 
is quite skewed, with 20% of recipient organizations receiving 70% of donations (Figure Sa), because 
allocation decisions are often made for convenience. 

4.1.2 Equity-Efficiency Tradeoff and Stakeholder Motivation. In designing this matching algorithm, 
we used participation to determine the tradeoff between equity and efficiency. In this context, 
we define "equity" as giving donations to recipients with greater need and "efficiency" in terms 
of the distance each donation travels from donor to recipient. Balancing equity and efficiency is 
challenging as this design choice has different impacts on different stakeholders. For example, if 
the matching algorithm prioritizes efficiency and gives donations to recipients closest to donors, 
volunteers will benefit from shorter driving times, but the donation distribution may be skewed and 
recipients in wealthier areas may receive more donations, as donors are often located in wealthier 
areas. On the other hand, if the matching algorithm prioritizes equity, recipients with greater need 
may receive more donations, but this may increase the distance that volunteers need to drive, as 
well as the effort 412 Food Rescue must spend in recruiting the volunteers. Finding a collective 
solution to this problem is critical to the success of the service, because all stakeholders will be 
more motivated to continue participating in the service if they feel their needs are respected. 
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4.2 Stakeholder Part ic i pants 

4.2. 1 Volunteer-Based Participation. We used our framework to build the matching algorithm 
collectively with 412 Food Rescue's stakeholders. One of the important considerations in par­
ticipatory governance is determining who participates. A widely-used and accepted method is 
volunteer-based participation [36], which accepts input from people who will be governed by the 
system and who choose to participate. Many democratic decisions, including elections, participatory 
forums, and civic engagement, are volunteer-based. In our application, we used a volunteer-based 
method with stakeholders directly influenced by the governing algorithm. As our first evaluation 
of the framework, we chose to work with a small focus group of stakeholders who volunteered to 
participate in order to get in-depth feedback. 

4.2.2 Participation Recruiting and Information. Our research took place over a period of one year. 
We solicited stakeholder participation to determine how the matching algorithm should weight the 
factors used to recommend recipient organizations. The stakeholders included donor organizations, 
recipient organizations, volunteers, and 412 Food Rescue staff. We included the governing entity as 
a stakeholder because they have a holistic viewpoint on logistics: how the donation is collected, 
handled and delivered to the recipient organization. The mission of the organization is to reduce 
food waste and serve food-insecure populations, which overlaps with other stakeholders' goals. 

The entire staff that oversees donation matching at the organization participated in the study. 
Recipients, volunteers, and donors were recruited through an email that 412 Food Rescue staff 
sent out to their contact list.4 We replied to inquiry emails in the order in which they arrived, and 
collected information about respondents' experience with 412 Food Rescue and organizational 
characteristics in order to ensure diversity. We limited the number of participants from each 
stakeholder group to 5-8 people, which resulted in an initial group of 23 participants (including V 4a 
and V4b, who participated together) with varying organizational involvement (Table 1). Fifteen were 
female (nine males) and everyone, except one Asian, was white.5 Sixteen participants answered 
our optional demographic survey. Two attended at least some college and 14 had attained at least a 
bachelor's degree. The average age was 48 (Median=S0 (SD=16.4); Min-Max:30-70). The average 
household income was $65,700 (Median=$62,500 (SD=$39,560); Min-Max:$25,000-$175,000). 

4.3 Research Process Overview 

Our research goal was threefold: we sought to apply the framework to build a matching algorithm, 
evaluate the usability and efficacy of the framework, and understand the effects of participation. 
To this end, we used our framework to allow participants to build their own individual models. 
We conducted think-alouds throughout the data collection procedure to understand participants' 
thinking processes. We also showed participants the method and results from each step of our 
framework-for example, how we aggregate individual models and explain the decisions-and 

4We did not include recipient organizations' clients for several reasons. First, we asked about service operation in this study. 
Our previous interviews with clients [SO] suggest that recipient organizations do not display where their food comes from 
at the time of distribution. Thus clients generally have no experience with or knowledge of the food rescue process and lack 
the hands-on experience required to consider disparate impacts on different stakeholders. Because of this, we represented 
clients' interests via feedback from the staff of recipient organizations who know and serve client populations. Additionally, 
412 Food Rescue did not have recipient client contact information for privacy reasons. In the discussion section, we explain 
how we will seek out a way to expand participation to include groups, including clients, that are not directly involved in 
the food rescue process. 
5Our participants were mostly white, which reflects the population of volunteers and non-profit staff in Pittsburgh. This is 
the result of a volunteer-based method [36]. In our next step, we will implement targeted recruiting of minority populations. 
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Role 

412 Food Rescue.* 

Fl Sessions 1-4 
F2 Sessions 1-4
F3 

Recipient organizations. (Clients served monthly, client neighborhood poverty rate) 

Rl Human services program manager (N=l S0, 13%) Sessions 1-4 

R6 After-school program employee (N=20, 33%) 

R2 Shelter & food pantry center director (N=S0, 20%) Sessions 1-4 
R3 Food pantry employee (N=200, 53%) Sessions 1-4 
R4 Animal shelter staff Session 1 
RS Food pantry staff (N=S00, 5%) Sessions 1-4 

R7 Home-delivered meals delivery manager (N=S0, 11%) Sessions 1-4 
R8 Food pantry director (N=200, 14%) Sessions 1-2 

Volunteers. 

Vl White male, 60s 
V2 White female, 30s Session 1 
V3 White female, 70s 
V4 White female, 70s (V4a), white male, 70s (V4b) t Sessions 1-4 
VS White female, 60s Sessions 1-4 
V6 White female, 20s Sessions 1-4 

Donor organizations. 

D1 School A dining service manager Session 1 
D2 School B dining service manager Sessions 1-4 
D3 Produce company marketing coordinator Session 1 
D4 Grocery store manager Sessions 1-4 
DS Manager at dining and catering service contractor Session 1 
D6 School C dining service employee 

Studies Involved 

Sessions 1-4, w 

Session 1, w 

Sessions 1-4, w 

Sessions 1-4, w 

Session 1, w 

Tab le  1 .  Part ic i pants. Sessions ind icate the  study sess ions that they part ic i pated i n :  w rep resents a workshop 
study. * I nfo exc l uded for  anonymity. t A coup le part i c i pated together. 

conducted interviews to study their understanding and responses to the method. Once partici­
pants completed all stages of the framework, we conducted interviews to understand participants' 
attitudes toward the resulting algorithm and the governing organization, 412 Food Rescue. 

Overall, our research resulted in 4-5 individual sessions for each participant and a workshop over 
the course of a year. Because of the extended nature of the community engagement, 15 participants 
completed all the individual study sessions, while 8 could participate only in the first couple of 
sessions due to changes in their schedules or jobs (Table 1). Because participants provided research 
data through think-alouds and interviews in addition to their input for the matching algorithm, we 
offered them $10 per hour. 

4.4 Researcher Stance 

Our research team included people with diverse backgrounds in human-computer interaction, 
artificial intelligence, theoretical computer science, information systems, decision science, ethics 
and design, affiliated with Carnegie Mellon University and University of Texas at Austin. We had 
a constructive design stance and sought to bring about positive change through the creation of 
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artifacts or systems. Two researchers have conducted research with 412 Food Rescue in the past 
and one researcher regularly volunteered in homeless shelters and food pantries in Pittsburgh. This 
relationship and familiarity with public assistance work helped us gain access to the research site. 

4.5 Analysis 

We report how we analyzed qualitative data from all sessions in this section to avoid repetition. All 
interviews were audio-recorded and transcribed, and researchers took notes throughout the think­
alouds and workshop. The data was analyzed following a qualitative data analysis method [24, 62]. 
Two researchers read all of the notes and interview transcripts and conducted open coding of the 
transcripts at the sentence or paragraph level on Dedoose.6 The rest of the research team met 
every week to discuss emerging themes and organize them into higher levels. As we progressed 
in our analysis, we drew from the literature on participatory governance [36] and procedural 
fairness [49, 52] to see whether the themes that we observed were consistent with or different from 
previous work. After all sessions were completed, we revisited the themes from each session and 
further consolidated them into the final themes we present in this paper. In Section 8, we report the 
number of participants associated with different themes in order to note the relative frequency of 
different opinions and behaviors in our study. However, as a qualitative study with a small sample 
size, we note that this should not be taken as an exact weight of whether one opinion is more 
significant or representative. 

5 INDIVIDUAL BELIEF MODE L BUILDING 
The first step in building individual belief models is to determine which factors (or features) 
are relevant and important; we derived these factors from the authors' previous study [SO] that 
examined the 412 Food Rescue stakeholders' concepts of fair donation allocation. A factor that was 
mentioned most frequently is the distance between donors and recipient organizations. Participants 
mentioned various other factors that represent the needs of recipient organizations, such as the 
income level of recipient clients, the food access levels of their neighborhoods, and the size of the 
recipient organization. Additional factors that were also deemed important were the distributional 
capabilities of recipient organizations, i.e., how fast they can distribute to their clients, and the 
temporal regularity in incoming donations. From the factors that participants mentioned, we 
selected the ones that came up most frequently and had reliable data sources.7 The selected factors 
capture transportation efficiency, recipient needs, and temporal allocation patterns (Table 2). For 
example, poverty rate is an indicator of recipients' needs; distance between recipients and donors 
is a metric of efficiency; and when each recipient last received a donation is a measure of allocation 
patterns over time. 

We conducted three sessions to develop a model to represent each individual in the final algorithm. 
Participants first completed pairwise comparisons (Figure 2a, Session 1) to train algorithms using 
machine learning. Participants who wanted to elaborate on their models participated in the explicit 
rule specification session (Figure 2b, Session 2). If their belief changed after Session 2, they provided 
a new set of pairwise comparisons to retrain the algorithm. Participants were later asked to choose 
one of the two models that represented their beliefs more accurately (Figure 3, Session 3). 

6https://www.dedoose.com 
7We did not use organization types (e.g., shelters and food pantries) or addresses because these aspects may communicate the 
racial, gender, or age characteristics of recipients and elicit biased answers based on inaccurate assumptions or discrimination. 
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Factor Explanation 

Travel Time The expected travel time between a donor and a recipient organization. Indicates time that 

volunteers would need to spend to complete a rescue. (0-60+ minutes) 

Recipient Size The number of clients that a recipient organization serves every month. (0- 1 000 people; 

AVG: 350) 
Food Access USDA-defined food access level in the client neighborhood that a recipient organization 

serves. Indicates clients' access to fresh and healthy food. (Normal (0), Low (1) ,  Extremely 

low(2)) [78] 

Income Level The median household income of the client neighborhood that a recipient organization 

serves (0-lO0K+, Median=$41,283) [77] . Indicates access to social and institutional re­

sources [69] .  

Poverty Rate Percentage of people living under the US Federal poverty threshold in the client neighbor­

hood that a recipient organization serves. (0-60 %; AVG=23% [77] )  

Last Donation The number of weeks since the organization last received a donation from 412 Food Rescue. 

(1 week-12  weeks, never) 

Total Donations The number of donations that an organization has received from 412  Food Rescue in the 

last three months. (0-1 2  donations) A unit of donation is a carload of food (60 meals) . 

Donation Type Donation types were common or uncommon. Common donations are bread or produce and 

account for 70% of donations. Uncommon donations include meat, dairy, prepared foods, 

etc. 

Tab le  2 .  Factors of match ing  algor i thm dec is ions .  The ranges of the factors are based on  the i r  real-wor ld  

d istr ibut ions. 

5.1 Mach ine  Learn i ng Model (Sess ion 1 )  

5. 1. 1 Pairwise Comparison Scenarios. We developed a web application to generate two potential 
recipients at random according to the factors (Table 2), and asked people to choose which recipient 
should receive the donation (Figure 2a).8 All participants completed a one-hour, in-person session 
where they answered 40-50 randomly generated questions. They were asked to think aloud as they 
made their decisions, and sessions concluded with a short, semi-structured interview that asked 
them for feedback about their thought process and their views of algorithms in general. During the 
research process, the link to the web application was sent to the participants who wished to update 
their models on their own. In fact, 13 participants chose to answer an additional 50-100 questions 
after Session 2 to retrain their machine learning models. 

5. 1 .2  Learning Individual Models. In order to learn individual models, we utilize random utility 
models, which are commonly used in social choice settings to capture choices between discrete 
objects [55]. This fits our setting, in which participants evaluate pairwise comparisons between 
potential recipients. In order to apply random utility models to our setting, we use the Thurstone­
Mosteller (TM) model [58, 74], a canonical random utility model from the literature. In this model, 
the distribution of each alternative's observed utility is drawn from a Normal distribution centered 
around a mode utility. Furthermore, as in work by Noothigattu et al. [60], we assume that each 
participant's mode utility for every potential match is a linear function of the match's feature 
vector. Therefore, for each participant i, we learn a single vector /3; such that the mode utility of 
each potential match x is µ; (x) = f3T x. We then learn the relevant /3; vectors via standard gradient 

8Improbable combinations of income and poverty (e.g., very high income coupled with very high poverty) were excluded 
according to the census data. All factors were explained in a separate page that participants could refer to. 
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Fig. 2. Two methods of  individual model building were used in  our study : (a) a machine learning model that 

participants trained through pairwise comparisons, and (b) an explicit rule model that participants specified 

by assigning scores to each factor involved in algorithmic decision-making. 

descent techniques using Normal loss.9 We also experimented with more complicated techniques for 
learning utility models, including neural networks, SVMs, and decision trees, but linear regression 
yielded the best accuracy and is the simplest to explain (see Appendix A). 

5.2 Exp l i c it Ru le  Model (Sess ion 2) 

To allow participants to explicitly specify matching rules, we asked them to create a scoring 
model using the same factors shown in Table 2. We used scoring models because they capture the 
"balancing" of factors that people identified when answering the pairwise questions.10  We asked 
participants to create rules to score potential recipients so that recipients with the highest scores 
would be recommended. Participants assigned values to different features using printed-out factors 
and notes (Figure 2b). We did not restrict the range of scores but used 0-30 in the examples in our 
instruction. Once participants created their models, they tested how their scoring rule worked 
with 3-5 pairwise comparisons generated from our web application, and adjusted their models 
in response. At the end of the session, we conducted a semi-structured interview in which we 
asked participants to explain the reasoning behind their scoring rules, and describe their overall 
experience. The sessions took about one hour. Two participants wanted to further adjust their 
models and scheduled 30 minute follow-up sessions to communicate their changes. 

5.3 Mach ine  Learn i ng versus Exp l i c it-Ru le  Models (Sess ion 3) 

We asked participants to compare and choose between their machine learning and explicit-rule 
models, selecting one that best represented their beliefs. To evaluate the performance of the models 
on fresh data that was not used to train the algorithm, we asked participants to answer a new set 
of 50 pairwise comparisons 1 1  before the study session and used them to test how well each model 
predicted the participants' answers. 

To explain the models, we represented them both in graph form that showed the assigned scores 
along with the input range for each feature (Figure 3). In order to prevent any potential bias in 
favor of a particular method, we anonymized the models ("Model X" or "Model Y"), normalized 
the two models' parameters (beta values) and scoring rubric using the maximum assigned score in 

9For participants who consider donation type, we learn two machine learning models, one for common donations and one 
for uncommon donations. 
10We also experimented with manually-created decision trees, but the models quickly became prohibitively convoluted. 
11 We used the same set of comparisons for all participants for consistency. 
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Fig. 3. Model explanations. Both machine learning and explicit-rule models were represented by graphs that 

assigned scores according to the varying levels of input features. 

each model, and introduced both models as objects of their creation. In a 60-90 minute session, a 
researcher walked through the model graphs with the participants, showed the prediction agreement 
scores between the two models, and presented all pairwise comparison cases in which the two 
models disagreed with each other or disagreed with participants' choices. For each case, the 
researcher illustrated on paper how the two models assigned scores to each alternative. 

At the completion of these three activities, participants were asked to choose which model they 
felt best represented their thinking. The models were only identified after their choice was made. A 
semi-structured interview was conducted at the end asking about their experience and reasons for 
their final model choice. We also analyzed individual models in terms of the beta values assigned to 
each factor, or the highest score assigned to each factor. As all the feature inputs were normalized 
(from O to 1), we used the strength of the beta values to rank the importance of factors for each 
individual. 

5.4 Fi nal I nd ividual Models 

In total, we trained 23 machine learning models12  and obtained 15 explicit-rule models. Of the 15 
participants who completed all studies and were asked to choose models that better represented 
their belief, 10 of them chose the machine learning models trained on their pairwise comparisons; 
the other five chose the models that they explicitly specified. 

The machine learning models had higher overall agreement with participant's survey answers 
than the explicit rule models when tested on 50 new pairwise comparisons provided by each 
participant, as seen in Table 3. However, as our sample size is small, we do not aim to make general 
claims on which model has better accuracy. In addition, for many, the machine learning model was 
the one they had built last and therefore reflected their current thinking at the time of comparison; 
we further elaborate on this in Section 8.1. We also note that we did not observe any differences in 
participants' perceived accountability in the creation of these models. Both models took an equal 
amount of participants' time and attention, and participants told us that they felt responsible when 
making choices and assigning scores. 

6 COLLECTIVE AGGREGATION 
Our framework uses a voting method to aggregate individuals' beliefs. When presented with 
a new donation decision, each individual's model generates a complete ranking of all possible 

12We note that there were 8 participants who participated in the first stage of the study but not subsequent stages (Table 1). 
The average cross-validation accuracy of their linear models was quite high, at 0 .819. 
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D2 D4 F2 F3 RI R2 R3 RS R7 VI V3 V4 VS V6 

ML 0.56 0.68 

ER 0.68 0.68 0.68 0.86 0.80 0.76 0.70 0.92 0.74 0.76 0.82 0.82 0.80 0.88 

0.86 0.78 0.92 0.92 0.90 0.90 0.78 0.94 0.74 0.90 0.92 0.78 

Tab le  3 .  Accu racy of the Mach i ne Learn ing  (M L) mode l  and the Exp l i c it-Ru l e  (E R) mode l .  Bold denotes 
the model the part i c i pant chose as the one that better rep resented the i r  be l i ef after seeing both mode l s '  
exp lanations (F igure 3) and the i r  pred ictions on the 50 eval uat ion pairwise comparisons. F l  chose the mach ine 
learn ing mode l  but d i d  not comp lete addit ional su rvey quest ions to calcu late mode l  agreement, so the resu lt 
is not i nc l uded i n  th i s  table. 

recipient organizations. The Borda rule aggregates these rankings to derive a consensus ranking and 
suggest recommendations. We conducted a workshop and interviews to understand participants' 
perceptions of this method. 

6.1  Method (Workshop) 

In an early stage of our research, we conducted a workshop in order to gauge participants' per­
ceptions of the Borda aggregation method and determine the method's appropriateness from a 
social perspective. Five participants (Table 1) who had built their individual models at that time 
attended the one-hour workshop. All stakeholder groups were represented. We prepared a hand­
out that showed individuals' and stakeholders' average models at the time, and a diagram that 
explained how the Borda rule worked. The description of the Borda rule given to participants was: 
"Individuals rank options according to belief. Each option receives a number of points determined 
by its ranking, with higher-ranked options receiving more points. The points are added up, and 
the winner is whichever option has the greatest number of points." The words "democratic" or 
"equal" were not used to avoid potential biases. We facilitated a discussion of how individuals 
reacted to the similarities and differences between their model and other groups' models, and had 
individuals discuss whether all the stakeholders' opinions should be weighted equally or differently. 
For participants who joined our research after this workshop, we asked the same questions about 
the Borda rule and stakeholder opinion weight in the interview in Session 4. 

6.2 Varying  Stakeholders'  Vot ing I nfl uence 

All participants but one believed that the weight given to different stakeholders in the final algorithm 
should depend on their roles. On average, participants assigned 46% of the voting power to 412 
Food Rescue, 24% to recipient organizations, 19% to volunteers, and 11% to donors.1 3  Nearly all 
participants weighted 412 Food Rescue staff as the highest group (n=13 out of 15), as people 
recognized that they manage the operation and have the most knowledge of the whole system. 
Donors were weighted the least (or tied for least) by nearly all participants (n=14 out of 15) 
including the donors themselves, as they are not involved in the process once the food leaves their 
doors. Recipients and volunteers were weighted similarly because participants recognized that 
recipient opinions are important to the acceptance of donations, and volunteer drivers have valuable 
experience interacting with both donors and recipients. In order to translate these weights to Borda 
aggregation, we allocated each stakeholder group a total number of votes that was commensurate 
with their weight, and divided up the votes evenly within each group. For example, 412 Food Rescue 

13This is based on the input from participants that participated in the workshop and/or Session 4. 
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Fig. 4. The dec is ion support tool exp la ins algor ithmic recommendations,  i n c l u d i n g  the nat u re of stakeholder 

part ic i pat ion ,  stakeholder  vot ing resu lts, and characteristics of each recommendat ion .  The i nterface h igh l ights 

the featu res of the recommended option that led to its select ion (marked by A) , the Borda scores given to the 

recommended opt ions in relat i o n  to the maxi m u m  poss ib le  score (marked by B), and how each o pt i o n  was 

ranked by stakeho lder  groups (marked by C). All rec i p ient i nformat ion  and locat ions are fabr i cated for t h e  

pu rpose o f  anonymizat i o n .  

employees are assigned 46% of the weight; this translates to allocating them 46 votes out of 100 
total as a group, where each employee 's  vote is "replicated" 46/3 times because three 412  Food 
Rescue employees participated in our study. 

7 EXPLANATION AN D DECIS ION SU PPORT 

Once recommendations are generated, the decision support interface presents the top twelve 
organizations, accompanied by explanations, to support the human decision-maker who matches 
incoming donations to recipients. We used the explanations to demonstrate to participants how 
their opinions had been incorporated into the algorithm's  decision-making. We also explained 
average stakeholder models to participants so that they could learn about others' models. 

7. 1 Design of Decis ion-S u p port Tool  

The interface of our decision support tool is shown in Figure 4. The tool was designed with other 
considerations, such as choice architecture [73] ,  but they are beyond the scope of this paper. We 
focus instead on the explanation of decisions made by collectively-built algorithms. 

• Decision Outcome Explanation (marked by A in Figure 4): We used an "input influence" style 
explanation [1 2] .  Features are highlighted in yellow when an organization is in the top 10% 
of recipient organizations ranked by that factor. For example, poverty rate is highlighted 
because the selected organization is in the top 10% of recipients when ranked from highest 
to lowest poverty rate. 

• Voting Score (marked by B in Figure 4) :  The Borda score for each organization is displayed. 
It shows this option's score in relation to the maximum possible score that an option could 
receive (i.e . ,  scores when every individual model picks this option as its first choice). This 
voting score can indicate the degree of consensus among participants. 

• Stakeholder Rankings (marked by C in Figure 4) :  Stakeholder rankings show how each 
stakeholder group ranked the given organization on average. It is a visual reminder that 



181 ' 18  Min Kyung Lee et al. 

all stakeholder groups are represented in the final algorithm and gives the decision-maker 
additional information about the average opinion of each stakeholder group. 

We implemented the interface by integrating it into a customer relations management system 
currently in use at 412 Food Rescue. Algorithms were coded in Ruby on Rails, the front-end interface 
usedeJavascript and Bootstrap, and the database was built with Postgres. The distances and travel 
times between donors and recipients were pre-computed using the Google Maps API and Python. 
We used donor and recipient information from the past five months of donation records in the 
database. On average, the algorithm produced recommendations for each donation in five seconds. 

7.2 Method (Session 4) 

We conducted a one-hour study with each participant to understand how the decision support and 
explanation influenced their perceptions of the matching algorithms and their attitude toward 412 
Food Rescue. In order to generate summary beta vectors for each stakeholder group, we normalized 
the beta vectors for all stakeholders in the group and took the pointwise average. This yields a 
summary beta vector where the value of each feature roughly reflects the average weight that 
stakeholders in the same group give to that feature. 

We first showed participants the graphs of their individual models and graphs of the averaged 
models for each stakeholder group, and asked participants to examine similarities and differences 
among these models. We next had participants interact with the decision support tool run on 
a researcher's laptop. The researcher walked participants through the interface, explaining the 
information and recommendations, and asked them to review the recommendations and pick 
one to receive the donation. After each donation, participants were asked their opinions of the 
recommendations, the extent to which they could see their models reflected in the results, and their 
general experience. We concluded with a 30 minute semi-structured interview in which we asked 
how participation influenced their attitude toward algorithms and 412 Food Rescue. We also asked 
participants to reflect on the overall process of giving feedback throughout our studies. 

8 FINDINGS: THE IMPACT OF PARTICIPATORY ALGORITHM DESIGN 

In the previous sections, we described how stakeholders used the WeBuildAI framework to build 
the matching algorithm for 412 Food Rescue over multiple sessions and a workshop. We now report 
the qualitative findings from observations, think-alouds, and interviews to describe the impacts of 
the WeBuildAI framework and participation. 

8.1 Participants' Experience with the WeBuildAI Framework 

Overall, the individual belief-elicitation step of the framework-using both machine learning 
and explicit rule specification methods and visualizing the learned models-successfully enabled 
participants to build an individual model that represented their beliefs on how the algorithm should 
make a matching decision. Participants perceived the automatic aggregation method based on the 
Borda rule as a nuanced, democratic approach; the decision support tool and explanation allowed 
them to understand how algorithmic recommendations were made. 

8.1.1 Effects of Individual Model Building Methods on Elicited Beliefs. Participants told us that 
performing pairwise comparisons and subsequently specifying explicit rules helped them develop 
and consolidate their beliefs into a set of principles that they could apply consistently in different 
decision contexts. Answering pairwise comparison questions helped familiarize participants with 
the problem setting; however, some participants commented that they felt like they were applying 
internal rules inconsistently, particularly in their first few questions. Explicitly specifying scores 
for each feature helped them reconcile their conflicting beliefs. For example, V l  told us that 
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she originally used organization size inconsistently, sometime favoring smaller organizations or 
bigger organizations, but when creating a rule, she determined that organization size should not 
matter. When she answered the new set of pairwise comparison questions to retrain the machine 
learning model, she further evaluated whether she could consistently apply her belief, i.e., that 
the organization size does not matter, to different contexts and whether she encountered any new 
situations in which she would need to further refine her rule. 

In choosing the model to use in the final matching algorithm, the most important factor for all 
participants, except one, was how closely each model represented their beliefs. In Session 3, 10 
out of 15 participants chose their machine learning models. For many, this was the model they 
had built last and therefore that reflected their thinking at the time of comparison. Others felt that 
the machine learning model had more nuance in the way different factors were weighted, and 
some valued the linearity of the model compared to their manual rules, which were often step-wise 
functions. Explicit-rule models were chosen by five participants. For four of these participants, 
their explicit-rule model did a better job of weighing all of the factors that mattered to them and 
screening off unimportant factors. In other words, machine learning models learned rules that they 
disagreed with-for example, a machine learning model may give linearly increasing weight to 
larger organization sizes. 

On the contrary, for one participant, the procedural difference in the two methods was why 
he chose the explicit-rule model. R2 trusted the reflective process of specifying a model and did 
not trust his pairwise answers nor the machine learning model built from them, even though the 
accuracy of the machine learning model was 90%, compared to 76% for the model that he created. He 
believed that determining policy should be based on defining principles, rather than case-by-case 
decisions; for this reason, he wanted to build a rule and follow the outcomes from the rule. 

An unexpected finding was that the methods' procedural differences seemed to influence which 
aspects participants focused on at the time of decision-making and, in some cases, the rules that 
participants made. Creating a scoring model from a top-down approach seemed to evoke a higher 
level of construal [75], eliciting an abstract level of thinking that was absent when answering 
pairwise comparisons. Many participants stated answering pairwise comparisons felt emotional 
because it made them think of real-world organizations. For example, Vl said that developing 
explicit scoring rules felt "robotic"; R3 said that he felt that creating the scoring model was easier 
than the pairwise comparisons because it took the emotion out of the decision-making process. For 
an administrative decision-maker, F3, answering pairwise questions made her focus on day-to-day 
operational issues like travel time because she related the questions to real-world decision-making. 
This contrasted with her explicit-rule model, which favored equity-related factors like income 
and poverty. When comparing the models in Session 3, she told us that she focused on idealistic 
matching that prioritized equity when she was specifying scoring rules. In the end, she chose 
her machine learning model, stating that while her explicit-rule model was appealing as a way of 
pushing herself beyond her operational thinking, she deemed travel time and last donation date 
most important in practice. 

8. 1 .2 Responses to the Borda-Based Aggregation. Participants appreciated that the Borda method 
gave every recipient organization a score (n=5) and that it embodied democratic values (n=4).14 In 
the workshop, Fl felt that giving every organization a score captured the subtleties of her thinking 
better than other methods, such as considering only the top-ranked organization: "I appreciate the 
adding up [of] scores. Recognize the subtleties." V3 also stated that being able to rank all recipients 
is "more true to .. .[being] able to express your beliefs." Rl approved of the method, saying, "It 's very 

14We note that the description of Borda given to participants described a scoring process and did not include words such as 
"voting" and "democracy" as reported in Section 6.1. 
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democratic," relating it to a form of human governance. Two other individuals, DZ and D4, also 
related the method to voting systems in the US. D4 recognized that some US cities in California 
recently used a similar voting method for their mayoral election. It is worthwhile to note that, when 
we asked about potential alternatives, participants expressed difficulty thinking of them (n=3). For 
example, R2 said, "I guess I don't know what the alternative way to do it would be, so I'm okay with it." 

8. 1.3 Responses to the Decision Support Interface. Participants were almost universally appreciative 
of the fact that the system keeps a human dispatcher in the loop to make the final decision rather 
than automating the decision entirely. While some participants (Fl and RS) acknowledged that full 
automation could be more efficient than a human-in-the-loop process, most participants expressed 
that having a human dispatcher overseeing the process was important as they might have knowledge 
of additional decision factors outside the scope of the algorithm. F3 expressed that the combination 
of human and computer decision-making elements was "magical" in that it combined the objective 
data of an algorithm with human elements "that the computer will never know ... like so and so at 
this place loves peaches and they make peach pies." Others (e.g., R2) expressed that the algorithm 
could enable human decision-making in a way that reduces bias or favoritism on the part of the 
dispatcher, thereby making the decisions of the organization more fair and objective. 

Participants were interested in the stakeholder rankings and asked to see more information. 
Given that the top twelve results often did not show the first choice for any stakeholder group, 
several participants wanted to see the first choice for each stakeholder group in addition to the 
voting aggregation scale (n=7). Participants appreciated that the stakeholder rankings showed 
opinions that might differ from those of 412 Food Rescue dispatchers (n=4). V6, who was concerned 
that 412 Food Rescue staff did not heavily weight factors that were important to her, was pleased 
that the voter preference scale illustrated the difference between her stakeholder group's average 
model and 412 Food Rescue' s average model. She hoped that the staff would see that their thinking 
differed from other stakeholders and perhaps reconsider their decisions in order to be more inclusive 
of other groups' opinions. 412 Food Rescue staff were interested in the information as well and F3 
mentioned that, while she would not solely base her decisions on stakeholder ranking information, 
she might use it as a tiebreaker between two similar organizations. 

8.2 Participation and Perceptions of Algorithmic Governance 

In a manner consistent with theories on procedural justice [ 49, 52] and participatory policy­
making [36], participants believed that having control over the algorithm through participatory 
algorithm design made the resulting algorithm fair, and this process improved their attitudes toward 
the organization as a whole. 

8.2. 1 Procedural Fairness in Participatory Algorithm Design. All participants mentioned that the 
fact that the organization was putting a priority on fairness, being open to new ideas, and including 
multiple stakeholder groups improved their perceived fairness and trust of both the matching 
algorithm and the organization itself. For example, one participant said, "These are everybody's 
brain power who were deemed to be important in this decision ... it should be the most fair that you 
could get." Some expressed that participation expanded the algorithm's assumptions beyond those 
of the organization and developers (n=6). V6  noted that it is easy for organizations to remain 
isolated in their own viewpoints and that building an algorithm based on collective knowledge was 
more trustworthy to her than "412 [Food Rescue] in a closed bubble coming up with the algorithm 
for themselves." V3 echoed this sentiment, stating that participation was "certainly more fair than 
somebody sitting at a desk trying to figure it out on their own." At 412 Food Rescue, F2 stated that 
''getting input from everyone involved is important" to challenge organizational assumptions and 
increase the effectiveness of their work. Other participants noted that all stakeholders have limited 

Proc. ACM Hum.-Comput. Interact., Vol. 3, No. CSCW, Article 181. Publication date: November 2019. 

A Ill O H T B L • �◄) 



WeBuildAI: Participatory Framework for Algorithmic Governance 181:21 

viewpoints that can be overcome with collective participation (n=3). Rl felt the algorithm would be 
fair only "if you took the average of everybody. ... [My model] is only my experience. And I view my 
experience differently than the next place down the road. And my experience is subjective." 

8.2.2 Empathetic Stance toward the Governing Organization. Participation in algorithm design 
led many participants to increase the degree to which they viewed 412 Food Rescue positively 
and develop a more empathetic stance toward the organization (n=8). For some participants, this 
happened because participation exposed the difficulty of making donation matching decisions and 
made them realize that there might not be a perfect solution, which in turn made them thankful 
for the work of the organization (n=4). For example, after experiencing the burden of making the 
matching decision and seeing how similar the recommended recipients can be in the interface, D2 
and V3 both expressed gratitude for 412 Food Rescue. Participants also expressed appreciation for 
the organization's concern for fairness and the effort needed to continually make such decisions. 
This shift in perception is particularly important because it can improve people's tolerance for and 
understanding of tradeoffs in governance decisions. 

The participatory algorithm design also increased some participants' motivation to engage 
with the organization (n=4). Many participants appreciated that their opinions were valued by 
the organization enough to be considered in the algorithm building process and expressed that 
they may increase their involvement with the organization in the future either through increased 
volunteer work (V3 and V6) or donation acceptance (R2). 

8.2.3 Reactions to Other Stakeholders' Models. While sharing other stakeholders' models is not a 
requirement of our framework, in this work, we showed the models to participants in order to get 
feedback on the fully transparent implementation of our framework.1 5  We report how participants 
responded to similarities and differences in stakeholder models. 

In individual models, all participants considered efficiency and equity factors. For example, all 
stakeholder group models valued distance as one of the top three factors and favored organizations 
that were deemed to be in greater need. Reviewing the models, participants expressed feeling 
assured that they shared these guiding principles with other participants (n=8). For example, all 
prioritized higher as opposed to lower poverty, and lower as opposed to higher food access. R7 was 
pleased to note that all participants were "on the same page" and concluded that "no matter what 
group or individuals we 're feeding, [ we J have the same regard for the food and the individuals that  
we 're serving." 

A main source of disagreement among models was how the factors were balanced. 412 Food 
Rescue Staff tended to weight travel time and last donation significantly more than the other 
factors. Donors, recipients, and volunteers tended to give all factors other than organization size 
relatively equal importance. Participants also had divided views on organization size, arguing for 
larger or smaller organizations, and did not prioritize this factor compared to others. In responses, 
participants acknowledged these differences and sought to make sense of others' assumptions. 
For example, Rl, referencing how important travel time was to her, mentioned that hers is more 
of a "business model" whereas others were more altruistic, more heavily weighting factors like 
income and food access. Some participants were even pleased to see differences in the models (n=3). 
R3 was pleased that other participants were considering unique viewpoints. Likewise V 4 and Rl 
both stated that it was natural to expect differences between stakeholders, as everyone has unique 
experiences, and that "this is the point of democracy" (V 4). 

However, one participant, V6, was concerned that 412 Food Rescue staff did not weight heavily 
her most important factors such as food access, income, and poverty. While she said that the 

15Participants also told us that they were curious about other stakeholders' beliefs. 
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algorithm was "fair" as it was collectively created, her trust in the organization was lowered as a 
result, because she inferred that they believe in different principles. She also raised a concern about 
other participants' input qualities. It took her significant effort to develop a model that accurately 
represented her views, and she could not judge whether other participants were "thoughtful enough 
to really put the effort into their models and capture their own emotions with it." She concluded that 
she still trusted the algorithm, but appreciated having human oversight of the final decision. 

8.3 Part ic i pation and Awareness of Algorith ms and Organ izational Decis ion-Maki ng 

Our findings suggest that participating in algorithm design improved algorithmic awareness at 
an individual level, as well as awareness of inconsistencies in decision-making practices at an 
organizational level. 

8.3. 1 Increased Algorithmic Awareness. At an individual level, participating in algorithm design 
changed participants' attitudes toward algorithms.16  They felt they better understood what an 
algorithm was and had more appreciation for the kinds of decisions that algorithms could make. For 
some participants, seeing how the two models predicted their answers in our study session made 
them rethink their initial skepticism and begin to trust the algorithm. Vl,  who in earlier studies 
expressed doubt that an algorithm could be of any use in such a complex decision space, stated at 
the end of Session 3 that he now "wholeheartedly" trusted the algorithm, a change brought about by 
seeing the work that went into developing his models and how they performed. F3 expressed that 
before participating, "the process of building an algorithm seemed horrible" given the complexities 
of allocation decisions. Seeing how the process of building the algorithm was broken down "into 
steps ... and just taking each one at a time" made the construction of an algorithm seem much more 
attainable. For D2, interacting with the researchers who were building the algorithm gave him an 
awareness of the role human developers play in determining algorithms. He said that, after this 
process, his judgment of an algorithm's fairness in other algorithmic systems would be based on 
"how it was developed and who's behind it and programmed [it] and how it's influenced." D2 felt that 
the final algorithm for 412 Food Rescue was fair because he came to know and trust the researchers 
over the course of his participation. 

8.3.2 Improved Awareness of Inconsistency in Organizational Decision-Making. The process of 
eliciting individual models allowed participants from the governing organization to be more aware of 
internal inconsistencies in decision-making within their organization, and provided an opportunity 
for them to revisit their own assumptions about other stakeholders. Guided only by the broad goals 
of the organization's mission, the employees previously made matching decisions according to 
their own criteria and interpretations of that mission. By externalizing their decision-processes 
into computational belief models, the employees were able to formalize their own decision-making 
processes, and see how their models meshed with or differed from other employees' processes, 
which brought hidden assumptions to the surface. For example, after seeing other employees' 
models, they discovered that some employees prioritized mid-sized organizations whereas others 
prioritized larger organizations, and employees differed in the ways they weighted poverty, income, 
and food access. 

Moreover, seeing other stakeholders' models allowed employees to compare their assumptions 
about other stakeholders with the models actually made by the stakeholders. One common as­
sumption held by the staff was that volunteers would prioritize travel time, but our volunteer 
stakeholders had diverse models, varying from one that predominantly weighted travel time to 
one that gave equal weights to travel time and recipient organizations' needs. When F2 saw that 

16None of our participants had a background in programming. 
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volunteers did not weight travel time as highly as she had thought, she questioned her evaluation of 
travel time: "Maybe [volunteers] don 't care as much. I think you end up hearing from the people who 
care ... It's like that  saying with customer service: Only complain when something 's happened." This 
reflection opens up the possibility that the organization could seek to appeal to diverse volunteer 
motivations and tailor recruiting methods accordingly. 

9 EVALUATION OF ALGORITHMIC OUTCOMES 
Our qualitative findings in the previous section show the procedural effect of participatory algorithm 
design, but what outcomes do collectively-built algorithms produce? In this section, we evaluate 
the algorithm's performance on various metrics. 

9 . 1  Evaluation Goal 

In the literature on policy-related algorithmic systems, the status quo-current human decision­
making practice-is deemed to be an appropriate baseline for comparison to measure the algorithmic 
tool's efficacy; thus, we compare our algorithm with current human decision-making at 412 Food 
Rescue. One major reason that the organization wanted to introduce the algorithmic allocation 
system was to improve equity in donation allocation made by organizational staff and distribute 
the donations to a larger set of recipients. Indeed, the skewness of their current distribution of 
donations (i.e., 20% of the organizations receiving 70% of the donations (Figure Sa)) is not the 
result of conscious strategy, but rather the result of, for example, the memory bias of human 
decision-makers selecting recipients that they have given donations to recently. 

9.2 Dataset 

The final matching algorithm included 23 individual models (Section 5) that generated complete 
rankings of possible recipients for each incoming donation; the rankings were then aggregated using 
the Borda method with the stakeholder weights provided in Section 6. We ran this collectively-built 
algorithm on historical allocation data from 412 Food Rescue containing a total of 1,760 donations 
from 169 donors over the course of five months (March-August 2018).17  There were 380 eligible 
recipient organizations in the database, and 277 of those received donations in the timeframe we 
considered.18  We compared our algorithm (AA) with two benchmarks: human allocations recorded 
in historical data (HA), and a random algorithm that selected a recipient uniformly at random (RA). 
In the simulations for our algorithm and the random algorithm, we applied some of the real-world 
constraints that influenced human dispatchers' decisions: for any given donation, we filtered out 
recipients that did not handle the donation type or were not open for at least 2 hours between the 
incoming donation time and 6 pm. 

9.3 Resu lts 

The results indicate that our algorithm can make donation allocations more equitable compared to 
human allocation without hurting efficiency (Figure 5). 

9.3. 1 Number of Donations Allocated to Recipient Organizations. Our algorithm resulted in a more 
equal donation distribution compared to human allocation, as illustrated in Figure Sb. As the human 
donation distribution is skewed, we conducted a Mann-Whitney U test, a nonparametric test that 

17The original data set had 1,862 donations from 177 donors given to 305 recipient organizations. 412 Food Rescue staff told 
us that 28 of the recipient organizations were either backup recipient organizations or became inactive at the time of the 
evaluation, thus we excluded them from the data. 
1846 recipients were added during the course of the five months, and for each day, we filtered out organizations based on 
the date when the recipient organizations were added in algorithm testing. 
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Fig. 5. The performance of our algorithm (AA) versus the human allocation (HA) and a uniformly random 

allocation (RA), on various metrics. 

does not require the data to be normally distributed, to compare the number of donations allocated 
to recipient organizations.19  The results show that algorithmic allocation was significantly more 
equally distributed than human allocation (AA Mediane= 4 donations (SDe= 3.73), Min-Max:0-20; 
HA Mediane= 2 donations (SDe= 7.26) Min-Max:0-59, U = 57814, p <.00000001). 

We also conducted a Gini coefficient analysis, a standard economic inequality measure of in­
come [40] or other kinds of resources [5]. A Gini index of zero means perfect equality, with everyone 
getting the same number of donations, and an index of 100 means maximum inequality, with one or­
ganization receiving all donations. Algorithmic allocation resulted in a Gini index of 42, which was 
lower than the Gini index of 68 in human allocation; this indicates that the algorithmic allocation 
was more equal. The random allocation algorithm achieved a Gini index of 32, which intuitively is 
close to the minimum possible, subject to the constraints. Graphically, as seen in Figure Sa, the 
closer the allocation line is to the diagonal line y = x, the fairer the allocation. Additionally, the 
x-axis is ordered from lowest to highest, so, for instance, our results show that the lowest 50% of all 
recipient organizations received about 5% of all donations under a human dispatcher, but received 
about 20% of all donations under our algorithm. 

9.3.2 Poverty, Income, and Food Access of Recipients. When considering poverty, income, and food 
access levels, random allocation can be seen as uniformly sampling from the poverty, median 
income, and food access rates of all recipients because these features are completely recipient­
specific. As illustrated in Figure Sd, Figure Se, and Figure Sf, the human dispatcher's decisions 
closely followed the underlying population distributions, but our algorithm donated to recipients 
with higher poverty rates, lower median incomes, and worse food access. A Mann-Whitney U test 
shows that the algorithmic allocation gave donations to areas with higher poverty rates (Median = 
19The convention is to report medians as the data is not normally distributed. 
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21.6%, SDe= 14.44%) significantly more than human allocation (Mediane= 18.3%, SDe= 13.73%, U = 
1303400, p < .00000001). Indeed, Figure Sd shows that the human and the random algorithm gave 
more donations to areas with 10%-15% poverty rates, whereas our algorithms gave more donations 
to areas with about 50% poverty rates. Algorithmic allocation also gave more donations to recipients 
with lower income (Mediane= $40,275, SDe= $16,312) than human allocation did (Mediane= $42,255, 
SD = $22,037, U = 1773200, p < .00000001), and the same pattern is observed to a lesser degree 
in the recipients' access to food levels (AA Median: 1.15 (SD=0.42), HA Median: 1.06 (SD=0.44), 
0=1414400, p =.0002; O=Normal access, 2=Extremely low access). 

9.3.3 Distance and Efficiency. One of the concerns of the organization was that distributing the 
donations more equitably could lead to longer and less efficient donation allocation. Our simulation 
results suggest that algorithmic allocation did not increase rescue distance, as illustrated in Figure 
Sc. A Mann-Whitney U test shows that the distance of rescues under algorithmic allocation, whose 
median is 5.5 miles, is significantly shorter than under human allocation, whose median is 6.15 
miles (U = 1646900, p = 0.001). 

1 0  DISCUSSION 

In this paper, we envision a future in which people are empowered to build algorithmic governance 
mechanisms for their own communities. Our framework, WeBuildAI, represents one way to realize 
this goal. We have implemented and evaluated a system of collective algorithmic decision-making, 
contributing to the emerging research agenda on algorithmic fairness and governance by advancing 
understanding of the effects of participation. 

1 0.1  Summary of the Research Questions and Results 
We summarize our results in response to the research questions raised in the introduction. 

10.1.1 What socio-technical methods will effectively elicit individual and collective beliefs about 

policies and translate them into computational algorithms? How should the resulting algorithms be 

explained so that participants understand their roles and administrators understand their decisions? 

(Section 8. 1). 

• The WeBuildAI framework successfully enabled participants to build models that they felt 
confident represented their own decision-making patterns. Participants understood graphical 
representations of individual models (Figure 3) and felt that collective aggregation via the 
Borda rule was fair. The decision support helped organizational administrators and other 
stakeholders understand how the final recommendations were made. 

• Our findings suggest the elicitation method design could influence elicited beliefs. The 
top-down explicit-rule method may have promoted idealistic beliefs, while the bottom-up 
pairwise comparison-based machine learning method may have promoted realistic beliefs 
that accounted for emotions and constraints associated with tasks. 

10.1.2 How does participation influence participants' perceptions of and interactions with algorithmic 

governance? (Sections 8.2 and 8.3). 

• Participation not only resulted in new technology design but also affected participating 
individuals and organizations [36, 80]. Our participants reported greater trust in and perceived 
fairness of the matching algorithm, the governing institution, and administrative decisions 
after participating. Some participants were more motivated to use the services, felt respected 
and empowered by the governing institution, and reported a greater empathy for difficulties 
in the organization's decision-making process. 
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• Our participatory algorithm design, particularly the individual model building method, 
increased participants' algorithmic awareness and literacy. Through the process of translating 
their judgments into algorithms, they gained a new understanding and appreciation of 
algorithms. The method also revealed inconsistencies in employee decision-making in the 
governing organization, and made employees revisit their assumptions of other stakeholders. 

10.1.3 How does the resulting co//ectively- built algorithm perform? (Section 9). 

• The comparisons of the collectively-built matching algorithm and human allocation, using 
five months of historic data, suggest that the matching algorithm makes donation allocations 
more even, and gives more donations to recipient organizations in areas with higher poverty, 
lower income, and low access to food, without increasing the transportation distance. 

1 0.2 Contributions to Research on Human-Centered Algorithmic Systems 

10.2.1 Fairness and Moral Behavior in Al. In response to recent scholarly and journalistic work that 
has pointed out the need for "fair" algorithms, much research has been done to devise computational 
techniques that guarantee fairness in algorithmic outcomes. Our work offers a method for building 
procedurally-fair governing algorithms [49). Our findings also offer empirical evidence of the 
effects of procedural fairness from the perspectives of both those who are affected by algorithms 
and those who use algorithms; the framework not only increased perceived fairness and trust of 
the algorithm but also influenced the organization by making the disparate effects of the algorithm 
more salient in their daily operation. 

Our work also suggests that ongoing research seeking to understand people's moral concepts for 
algorithms and AI needs to be more cognizant of the design of the stimuli. (Some studies use more 
illustrative, vivid descriptions, whereas others use abstract textual descriptions.) Previous work 
in experimental moral psychology suggests that the vividness and realism of stimuli influences 
participants' answers. Consistent with this literature, our work suggests that the top-down versus 
bottom-up approach of building an algorithm may elicit different levels of construal, resulting in 
qualitatively different algorithmic models. It is important to choose an elicitation method and level 
of abstraction appropriate for the task context, and to take a reflective approach so that people can 
be aware of those situational effects and build a model in accordance with their beliefs. 

10.2.2 Community Engagement in Algorithm Design. Our work contributes to recent research that 
calls for community engagement in AI design by offering a method to leverage varying stakeholders' 
participation directly in the design of the algorithm. By working with real-world stakeholders with 
various educational and economic backgrounds to build an algorithm that operates a service, we 
demonstrate the feasibility and potential of community involvement in algorithm design. At the 
outset of our research, we were unsure whether participants would feel confident and comfortable 
enough to express their beliefs on algorithms, and were concerned they might mistrust Al due to 
negative representations in popular media. It has been a rewarding experience to see participants 
not only expressing their beliefs, but also gaining trust in and becoming empowered through 
algorithmic systems. Al systems should be designed to facilitate these changes. 

1 0.3 Levels of Participation in Algorithmic Governance 

In this section, we define levels of participation in algorithmic governance. We discuss the upsides 
and downsides of different forms of governance and when collective participation is appropriate, 
reflecting on our research. 

10.3.1 Closed, Non-Participatory Governance. Institutions can design a governing algorithm with­
out involving stakeholders by drawing from their existing data and assumptions. This form of 
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governance is cost-effective compared to participatory governance, which requires effort and 
resources in soliciting and synthesizing participation. Closed governance is appropriate when 
there are legitimate metrics for algorithm design. For example, it might be appropriate if the goal 
is solely to minimize the volunteers' travel time. In our research, the organization was open to 
stakeholder participation because the staff were unclear on how to balance efficiency and equity 
in their daily operations. Additionally, closed governance may not inherently earn stakeholders' 
trust; it works best when the governing institution has already established trust with those being 
governed. Otherwise the algorithmic decisions may be challenged, mistrusted, or not adopted. 

10.3.2 Mediated, Indirect Participatory Governance. Another form of governance is the mediated 
use of participants' input, resulting in participants' indirect influence on final algorithmic policy. 
In this form, stakeholders provide input to inform the designers and policymakers, who later 
design and implement the governing algorithms. The input can be collected through interviews 
or tools such as individual belief modeling, as in our framework. This form allows the governing 
organizations to operate on more accurate stakeholder assumptions, and communicating about 
the stakeholders' involvement can cultivate trust and increase the chances of adoption by those 
who are governed. This form is most appropriate when the organization seeks to use participatory 
feedback while retaining full control of the algorithm's design. 

10.3.3 Direct Participatory Governance. In fully participatory algorithmic governance, stakeholders' 
participation is directly implemented in the final algorithm. In this form, participants feel most 
empowered and responsible, according to both existing literature and our work. However, the 
governing organization has less control over the final algorithm design. Direct participatory 
governance is most appropriate in contexts where stakeholders' trust and motivation to participate 
in the governing organization are critical, when a high level of procedural fairness is required, or 
in organizations and communities that are already self-governed, such as Reddit. 

1 0.4 Extension of the We BuildAI Framework and Future Work 

Our application of the framework to 412 Food Rescue is a case study that implements participatory 
governance in one context. Our framework can be used and extended to support both mediated and 
direct participatory governance, and potentially for other algorithmic governance situations that 
involve normative design decisions and associated tradeoffs. For example, our framework could be 
used to create governing algorithms that allocate public resources or contribute to smart planning 
services, placement algorithms in school districts or online education forums, or hiring recommen­
dation algorithms that balance candidate merit with equity issues. Extending our framework to 
new contexts requires addressing several challenges. 

10.4.1 Individual Model Building as a Design Tool. Our findings suggest that the process of building 
individual models of algorithmic policy has many benefits. Externalized models provide a concrete 
place for starting a conversation about similarities and differences among the stakeholders or 
staff members of the organization. Designers and policymakers can use the models to inform 
algorithm design, or as an auditing or evaluation metric to assess the algorithm's effects from 
diverse stakeholders' perspectives. However, our research only used about 8-10 features that people 
could understand. Further research will be needed to apply the individual modeling method to 
algorithms with hundreds of features or more complex features. New techniques will be needed to 
explain and combine the features into a set that people can process. 

10.4.2 Collectively Aggregated Decisions for Direct Participatory Governance. Our framework can be 
applied to enable direct participatory governance, particularly in contexts in which trust, motivation, 
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and perceived fairness matter, and, in its current implementation, contexts that do not require 
instantaneous decisions (within, say, less than a second). 

One challenge, though, is to determine who participates and whether participation needs to be 
regulated. Opening up an algorithm to participation means that some participants may potentially 
hold opinions that are not socially acceptable. One way to avoid this is to limit participation so that 
democratic control of algorithms is subject to the constraints of public reason [10, 65]. This ensures 
that the behavior of algorithms is justified by a universally agreed-upon subset of principles. Future 
work would need to investigate how to broaden participation while respecting diversity within 
public reason, and devise an ethical way to determine the boundaries of participation. 

Another challenge is ensuring the quality of participation, particularly when participation occurs 
at scale. Techniques used in crowdsourcing for quality assurance could be adopted to judge the 
quality of participation based on the amount of time and number of iterations people use in creating 
their models. Anecdotally, in our study, we observed that the machine learning model's accuracy 
was low when participants told us that they were applying rules inconsistently. Further work needs 
to investigate whether model accuracy can be another metric. 

When people participate in building systems, those systems become more transparent to them 
and they gain a deeper understanding of how the systems work. While this is one of the main sources 
of trust, one potential concern is that people will use this knowledge to game and strategically 
manipulate the system. To clarify, we do not mean that the potential manipulation of the systems 
by the disempowered is a risk. We aim to create benefits for all those in need, and we believe the 
system could be at risk if some individual parties skew the results to maximize their own benefits 
when all participating individuals have a similar level of need. Indeed, one of the main topics of 
research in computational social choice [17] is the design of voting rules that discourage strategic 
behavior-situations where voters report false preferences in order to sway the election towards an 
outcome that is more favorable according to their true preferences. However, this is not likely to 
be an issue for our framework because each individual does not have direct control over the final 
algorithm behavior. One may try to manipulate one's pairwise comparisons or specify preferences 
to obtain a model that might lead to preferred outcomes in very specific situations, but the same 
model would play a role in multiple, unpredictable decisions. The relation between their models and 
future outcomes is so indirect that it is virtually impossible for individuals to benefit by behaving 
strategically. That said, future work would need to evaluate this question in the real world. 

10.4.3 Promoting Representative Participation. One of our goals in designing this participatory 
framework is to empower stakeholders who typically do not have a say in the algorithms that govern 
their services, communities, or organizations. By empowering, we mean providing a method or 
tool that allows people to influence and control a system that they themselves use or an institution 
to which they belong [23, 33]. This shared power between users and developers, or individuals 
and governing parties, could increase the self-efficacy [7] and motivation [23] of stakeholders. 
Empowerment is one of the traditional values of HCI research and practice [ 68]. 

However, recently scholars have also pointed out that "material empowerment;' or the technical 
tool itself [68] is not enough to enable people to make positive effects on social problems; one 
needs to devise solutions that also account for legal, social, and economic constraints [57, 68]. Our 
framework provides a tool that can enable stakeholders to participate in algorithm design, but it 
in and of itself will not necessarily result in equal empowerment of all stakeholders. Including 
representation from communities that are underserved or disadvantaged is a critically important 
challenge to address in future work. While many in these communities may technically have the 
opportunity to participate, they may face barriers like time or resource constraints that limit their 
access to participation. For our context with 412 Food Rescue, we acknowledge for example that 
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volunteers must have access to at least two relatively scarce commodities: access to a private vehicle 
and free time. Furthermore, recipient organizations often do not have reliable contact information 
for their clients, who may not have regular access to email or cell phone service. This poses a 
practical barrier to participant recruitment. In addition to technological design interventions like 
those we put forward in this paper, social and economic infrastructure will be necessary to ensure 
equal participation of all stakeholders. 

1 0.5 Limitations 

Like any study, our work has limitations that readers should consider. Our study evaluated people's 
experiences with participation, as well as their attitudes toward and perceptions of the resulting 
algorithmic systems. As our next step, we will deploy the system in the field in order to understand 
long-term effects and behavioral responses. In the deployment, we will also consider additional 
evaluation measures for the algorithm, such as stakeholder satisfaction. Additionally, in developing 
our framework, we intentionally used a focused group of participants to get in-depth insights 
and feedback on our tools and framework. As we implement our next version, we will examine 
participation with a larger group of people, including recipient organizations' clients, by developing 
an educational component and targeted recruiting methods. We will also explore the possibility of 
running an open system, where people can join at any time or update their models by providing more 
data. We also acknowledge that despite our best efforts to base our design choices on participants' 
input gained through interviews (for example, who the stakeholders are, what factors to use), our 
views might have influenced our analysis of participants' inputs. Our plan to have an online system 
where participants can further comment on the selected features, stakeholders, and evaluation 
measures may mitigate this in the future. Finally, our framework needs to be tested with other 
contexts and tasks that involve different cultures and group dynamics. We are particularly interested 
in the effects of participation when collective opinions are polarized. On the one hand, it might be 
the case that a participatory, voting-based approach would be the only way to find a consensus 
solution. On the other hand, additional techniques-such as public deliberation through an open 
forum-might be needed to bring together polarized parties to ensure the efficacy of the resulting 
algorithms. Future work would need to investigate this question further. 

1 1  CONCLUSION 

Increasingly, algorithms make decisions influencing multiple stakeholders in  government institu­
tions, private organizations, and community services. We envision a future in which people are 
empowered to build algorithmic governance mechanisms for their own communities. Toward this 
goal, we proposed the WeBuildAI framework. In this framework, stakeholders build an algorithmic 
model that represents their beliefs about ideal algorithm operation. For each decision task, each 
individual's model votes on alternatives, and the votes are aggregated to reach a final decision. 

As a case study, we designed a matching algorithm that operates 412 Food Rescue's on-demand 
transportation service, implementing the framework with their stakeholders: donors, volunteers, 
recipient organizations, and 412 Food Rescue' s staff. We then evaluated the resulting algorithm 
with historical donation data, which showed that our algorithm leads to a more even donation 
distribution that prioritizes organizations with lower income, higher poverty rate, and lower food 
access clients compared to human allocation decisions. Our findings suggest that the framework 
improved the perceived fairness of the allocation method. It also increased individuals' awareness 
of algorithmic technology as well as the organization's awareness of the algorithm's impact and 
employee decision-making inconsistencies. 

Our study demonstrates the value and promise of using the WeBuildAI framework as a design 
tool in order to achieve human-centered algorithmic governance. Future work needs to investigate 
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mechanisms to expand the application of the framework and its boundary conditions, as well as 
ways to overcome existing socioeconomic and institutional barriers to enabling wider participation. 
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A LEARN ING MODELS OF  VOTERS 

Throughout this entire process, we evaluate each model by withholding 14% of the data and using 
that as a test set. Once we train the models on 86% of the data, we evaluate their performance on 
the test set and report the average accuracy of the model. 

A. 1 Random Uti l ity Models with Li near Uti l it ies 

Random utility models are commonly used in social choice settings to capture settings in which 
participants make choices between discrete objects [55]. As such, they are eminently applicable to 
our setting, in which participants evaluate pairwise comparisons between potential recipients. 

In a random utility model, each participant has a true "utility" distribution for each potential 
allocation, and, when asked to compare two potential allocations, she samples a value from each 
distribution and reports the allocation corresponding to the higher value she sees. Crucially, in 
our setting, utility functions do not represent the personal benefit that each voter derives, as is 
standard in other settings that use utility models. Rather, we assume that when a voter says, "I 
prefer outcome x to outcome y;' this can be interpreted as, "in my opinion, x provides more benefit 
(e.g., to society) than y:' The utility functions therefore quantify societal benefit rather than personal 
benefit. 

In order to apply random utility models to our setting, we must exactly characterize, for each 
participant, the distribution of utility for each potential allocation. We consider two canonical 
random utility models from the literature: Thurstone-Mosteller (TM) and Plackett-Luce (PL) mod­
els [53, 58, 63, 74]. Both of these models assume that the distribution of each alternative's observed 
utility is centered around a mode utility: the TM model assumes that the distribution of each 
alternative's observed utility is drawn from a Normal distribution around the mode utility, and 
the PL model assumes that the distribution of each alternative's observed utility is drawn from a 
Gumbel distribution around the mode utility. 

As in work by [ 60], we assume that each participant's mode utility for every potential allocation 
is a linear function of the feature vector corresponding to the allocation; that is, the mode utility is 
some weighted linear combination of the features. For each participant i, we learn a single vector f3i 

such that the mode utility of each potential allocation x is µi (x) = f3T x. We then learn the relevant 
f3i vectors via standard gradient descent techniques using Normal loss for the TM utility model 
and logistic loss for the PL utility modei.20 

A.2 Specific  Design Decis ions 

Separate Models for Different Donation Types. Certain participants consider donation type when 
allocating donations, whereas most do not. In light of this, we train two separate machine learning 
models for participants who consider donation type (one for common donations and one for less 
common donations), and we train one machine learning model for participants who did not consider 
donation type. Although training two separate models for participants who did consider donation 

20Logistic loss captures the PL model because the logistic function can be interpreted as the probability of one alternative 
beating the other (implicitly captured by the structure of the PL model), and logistic loss is the negative log of this probability. 
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type resulted in roughly half the training data for each model, the models were more accurate 
overall. 

Quadratic Utilities. Many participants had non-monotonic scoring functions for various features. 
One common example was organization size: multiple participants awarded higher weight to 
medium-size organizations and lower weight to both small and large organizations. In order to 
capture non-monotonic preferences, we tested a quadratic transformation of features, where we 
learned linear weights on quadratic combinations of features. Concretely, given a feature vector 
x = (x1, x2, x3), we transform x into a quadratic feature vector x2 = (x1, Xi, x2, xf, x3,  xD and learn 
a vector /J; for each participant i. Although this allowed us to more accurately capture the shapes 
of participants' value functions, it resulted in slightly lower accuracy overall. This is most likely 
due to the increased size of the /3; vectors we learned-in general, learning parameters for more 
complex models with the same amount of data decreases performance. 

TM vs. PL. Overall, learning Thurstone-Mosteller models performed better than learning Plackett­
Luce models. 

Cardinal vs. Ordinal Feature Values. We also experimented with cardinal vs. ordinal feature values, 
where cardinal features use the values themselves and ordinal features only take the rank of the 
feature value among all possible values for the feature. This was only relevant for recipient size, 
which was the only feature with nonlinear jumps in possible value. Overall, training on cardinal 
feature values led to slightly higher accuracy than training on ordinal feature values. 

Polynomial Transformations of Features. In order to capture nonlinear mode utilities, we tested a 
polynomial feature transformation where we learned linear weights on polynomial combinations 
of features up to degree 4. For instance, given a feature vector x = (x1, x2, x3), a polynomial 
combination of these features of degree 2 transforms each feature vector x into an expanded 
feature vector Xz = (x1, Xz, X3, Xi, x,xz, X1X3, xf, XzX3, xD. We again learn a single /J; vector for each 
participant i on these transformed features; note that the length of the /3; vectors increases, which 
stretches our already sparse data even further. We observed that accuracy monotonically fell with 
increasing degree of the transformed feature values; linear features performed the best. 

A.3 Pair-Based Approaches 
We also learned models for straightforward comparisons; i.e., without random utility models. For 
all of these models, we transformed comparison data of the form (x), xf, y;), where x) and xf are 
the feature vectors for the two recipients and y; is the recipient that is chosen, into (x{ - xf, y;), as 
in the work of Joachims ( 43]. This allowed us to train models with fewer parameters and ameliorate 
the effects of overfitting on our small dataset. 

Rank SVM. We implement Ranking SVM, as presented by Joachims ( 43], which resembles standard 
SVM except we transform the data into pairs, as discussed above. We use hinge loss as the loss 
function, as is standard with SVMs. 

Decision Tree. After again transforming the data into pairwise comparison data, we implement a 
CART decision tree with the standard scikit-learn DecisionTreeClassifier. However, we both limit 
the depth of the tree and prune the tree in a post-processing step because it overfit tremendously 
to our data. 

Neural Network (RankNet). Lastly, we implement a single-layer neural network with the pairwise 
feature transform, identity activation function, and logistic loss. This was based on the RankNet 
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algorithm of [19). We note that this is, in essence, equivalent to learning a linear utility model (in 
particular, a PL model). However, it slightly out-performs the aforementioned linear utility model. 

A.4 Final model 

In general, we found that approaches that learned (linear) utilities for random utility models strongly 
outperformed pair-based approaches. 

Therefore, due to both its simplicity and good performance, our final model is the TM utility 
model with linear mode utility. Crucially, it is quite easy to summarize and explain to constituents, 
as utilities are linear with respect to features. 
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