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Abstract 
This article analyzes how Big Data is changing the way we learn from observations. 
We describe the changes in statistical methods in seven areas that have been shaped by 
the Big Data-rich environment: the emergence of new sources of information; visu-
alization in high dimensions; multiple testing problems; analysis of heterogeneity; 
automatic model selection; estimation methods for sparse models; and merging net-
work information with statistical models. Next, we compare the statistical approach 
with those in computer science and machine learning and argue that the convergence 
of different methodologies for data analysis will be the core of the new field of data 
science. Then, we present two examples of Big Data analysis in which several new 
tools discussed previously are applied, as using network information or combining 
different sources of data. Finally, the article concludes with some final remarks. 
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1 Introduction 

At the end of last century the two main ingredients of the digital society were created: 
the World Wide Web in the CERN in Geneva, that allows fast and simple communica-
tion in the internet, and the smart phones in USA, which offer high computing power 
and new ways of receiving and transmitting information to an increasing number of 
persons. Both advances have modified the way we work, how we interact with others 
and the use of our free time. They have made people generators of social data that 
have been found to be of economic value in many different environments. Social net-
works, and surfing in the www using the smart phones, are producing large amount 
of information that adds to the huge data banks generated in an automatic way by 
sensors monitoring industrial, commercial or services, activities. For the first time in 
history we have data everywhere, the now called Big Data. These data are a mixture 
of structured and unstructured information; they grow exponentially and are produced 
with very small cost. Also, the cost of storing data is continuously decreasing and the 
speed of processing is growing very fast. 

Statistics as a scientific discipline was created in a complete different environment. 
The statistical methods that are still taught today were developed for a world in which 
data were very scarce, and we have to supplement this lack of information with models 
based on simplifying assumptions in order to draw conclusions from small data sets. 
Merging experimental data and casual statistical models has been the backbone of 
the scientific method to advance our knowledge in many disciplines. However, the 
main paradigm in statistics, we have a random sample from some population, and we 
want to use this sample to make inference about the parameters of the population, 
is not well suited to the new problems we face today: large heterogeneous databases 
sometimes unstructured, which may include texts, images, videos, or sounds, from 
different populations and as many (or even more) variables than observations. Also, 
the standard way of comparing methods of inference in terms of efficiency is not 
very relevant when the data coincide almost with the whole population. On the other 
hand, the idea of robustness become increasingly important, although in a more broad 
meaning that is normally used in standard robust statistics. The computing capabilities, 
that imposed a strong limitation for many years in the development of statistical 
methods, have increased so much that many of the usual assumptions are no longer 
needed. For instance, the hypothesis of linearity is seldom true in large data sets, 
and it is not required with the estimation power of nowadays computers. Also, new 
criteria should be used when the number of variables is larger than the number of 
observations. Finally, we need automatic procedures able to extract the information in 
large and dynamic contexts in which the data are produced continuously. 

Several works have analyzed the changes that this Big Data world is produc-
ing in statistical data analysis. Efron and Hastie (2016) is an excellent reference 
on these changes; see also Bühlmann and van de Geer (2011) for the analysis of 
high-dimensional data. Fan et al. (2014) includes an interesting presentation of sev-
eral statistical procedures that are not longer optimal with Big Data and discusses, 
among other problems, the effect of endogeneity, that is usually forgotten in standard 
statistical analysis. Chen and Zhang (2014) presents an overview of these problems, 
mostly from the computer science perspective. Donoho (2017) analyses data science 
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as a new area that includes statistics but has a broader perspective. Hall et al. (2005) 
were among the first that used asymptotics in which the dimension tends to infinity, 
while the sample size remains fixed, and found a common structure underlying many 
high-dimension, low-sample-size data sets. Other useful references on this field are 
Bühlmann et al. (2016), Bühlmann and van de Geer (2018), Cao (2017), Dryden and 
Hodge (2018), Gandomi and Haider (2015), Härdle et al. (2018), Peña (2014), Riani 
et al. (2012), and Torrecilla and Romo (2018), among many others. 

The article is organized as follows. In the next section, we discuss how Big Data is 
changing statistics and modifying the way we learn from data. This is illustrated by 
discussing seven areas which have been shaped by the use of increasingly large and 
complex data sets. Our approach complements in some topics to Fan et al. (2014), and 
includes others, as network models, that are not discussed in previous works. Next, we 
compare the statistical approach with these of computer science and machine learning, 
argue that the new Big Data problems are a great opportunity to expand the scope of 
statistical procedures, and discuss the emergence of data science as the field that studies 
all the steps in data analysis with a convergence of different methodologies. In this part 
we supplement the excellent article on data science by Donoho (2017), emphasizing 
aspects that are not considered inhis reviewof this field.Then,wepresent twoexamples 
of Big Data analysis in which several of the ideas discussed in the previous section 
are used to provide new data insights. Finally, the article concludes with some final 
remarks. 

2 Changes in statistics for big data 

We have selected seven areas in which the availability of increasing large and com-
plex data sets have changed the traditional statistical approach. Also, these fields are 
expected to be transformed further for the new opportunities provided by Big Data. 
They are: (1) analyzing new sources of information: texts, images, videos, audios 
and functions; (2) data visualization in high dimensions; (3) analyzing heterogeneous 
data; (4) multiple hypothesis testing and the false discovery rate; (5) automatic pro-
cedures for model selection and statistical analysis; (6) estimation procedures in high 
dimension with sparse models; (7) analyzing networks and incorporating network 
information into statistical models. 

2.1 Analyzing new sources of information: texts, images, videos, audios and 
functions 

Until very recently, in statistics data were a set of observed values of one or several 
variables. The values can represent a sample at a given time, a sequence over time 
of one or several time series, or a sequence of spatial data in different locations. It 
is assumed that these data are represented by numbers (for numerical variables) or 
letters (for attribute variables), and are summarized in a table or in a matrix. Also, it is 
assumed that the data have been recorded by some given objective, and they represent a 
sample from some well-defined population. However, now, data are often generated in 
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Fig. 1 Process of transforming pixels in images into images 

an automatic way, by sensors, webs, social networks, and other devices with different 
frequency and periodicity, and include not only structured variables, as before, but also 
texts, images, videos, audios or functions, that should also be considered as data. Thus, 
a central problem is combining information from different sources. For instance, in 
Medicine, we want to merge all sorts of information coming from different hospitals 
and care units in order to learn at a faster rate from new illnesses. In fact, many of the 
huge advances in clinical treatment in the last years are mostly due to this process of 
combining many sources of information. 

The analyses of text data has a long tradition in statistics. For instance, Mosteller 
and Wallace (1963) used text analysis to decide the authorship of the disputed Fed-
eralist Papers in USA. However, the large textual information in social networks and 
in the web, the advances in speech recognition and the increase in computer power 
have led to the computerized text analysis of natural language and the research field of 
sentiment analysis (see Tausczik and Pennebaker 2010). Sentiment analysis deals with 
the computational treatment of opinions and sentiments, considering people subjec-
tivity as an important field of empirical research. This area is being mostly developed 
in the computer science literature, although using many tools of classical multivariate 
analysis, such as discrimination, clustering or multidimensional scaling. In addition, 
the merging of information coming from sentiment analysis with network information 
(see Sect. 2.7) is a powerful tool for social science analysis, see, for instance, Pang 
and Lee (2008). 

The second type of new data we discuss are images. The digital computer made 
possible incorporating images as new sources of information. It was known since the 
second half of the 19th century (due to Young and Helmholtz) that any color can be 
well represented by merging three monocolor filters: red, green and blue, the RGB 
representation. This idea was incorporated in the computers in the 1990s to manage 
colors, with the enhanced graphics adapter (EGA), that represents an RGB image by 
threematrices of numbers (pixels) thatwhen combined produce the image, as indicated 
in Fig. 1. This representation opens the way to image analysis, initiated in the field 
of computer science in groups of artificial intelligence and robotics in USA, mostly 
with medical applications. The advances in this field in the 1980s are presented in Jain 
(1989). A pioneering work of statistical analysis of images was Besag (1986), but the 
most important developments in this field, as computer vision, have appeared outside 
statistics. Only recently, statisticians are considering images as a new source of useful 
data for statistical analysis. See, for instance, Lu et al. (2014). 
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A similar situation occurs with video analysis. Videos can be seen as images 
collected through time and are frequently used in diverse areas including climatol-
ogy, neuroscience, remote sensing, and video surveillance, among others. Due to the 
dynamic nature of videos, change point detection is an important problem in video 
analysis. For instance, we can be interested in detecting the birth of a hurricane, the 
presence of brain activity, or the presence of a thief in a building. Radke et al. (2005) 
present a survey of the common processing steps and core decision rules in change 
point detection algorithms for videos. Dimension reduction techniques are frequently 
used for video compression, see, for instance, Majumdar (2009). Clustering methods 
are used to motion segmentation and face clustering problems in computer vision, see, 
for instance, Vidal (2011). 

Audio analysis has been mostly developed in electric engineering, often using sta-
tistical ideas as, for instance, hiddenMarkovmodels in speech recognition, seeRabiner 
(1989). Some nonlinear time series research have used time series of sounds as exam-
ples for modeling, but the advances in this field have not stimulated research published 
in statistical journals. Some exceptions are Bailey et al. (1998) and Irizarry (2001), 
among others. More recently, Pigoli et al. (2018) used a time–frequency domain 
approach to explore differences between spoken Romance languages using acous-
tic phonetic data. 

Both images and audio signals have been recently part of the interest of functional 
data analysis, a field of statistics that has grown fast in the last two decades. Functional 
data arises when the variables of interest can be naturally viewed as smooth functions. 
For instance, sensors measuring human vital signals, such as body temperature, blood 
pressure, and heart and breathing rates, or human movements, such as hip and knee 
angles, are able to provide almost continuous measurements of all theses quantities. 
This leads to data sets of several terabytes, such as those encountered in fMRI (func-
tional magnetic resonance imaging). It is true that functional data samples have an 
inherent limitation since the functions can only be observed at discrete grids. How-
ever, smoothing techniques are able to reproduce the unobserved functions that allow 
researchers to use the underlying infinite-dimensional and functional characteristics 
of the data. There is an increasing amount of methods developed for functional data 
sets, including dimension reduction techniques for handling the infinite-dimensional 
data structures, regression models in which the predictors and/or the response are 
functional, supervised and unsupervised classification methods, and functional time 
series, among many others. See Ramsay and Silverman (2005), Cuevas (2014) and 
Kokoszka and Reimherr (2017), for overviews in functional data analysis covering 
all these aspects, and Shi and Choi (2011) for an overview on regression analysis for 
functional data. 

A traditional way of combining information about variables of different frequency 
or location is Meta-Analysis (see Brockwell and Gordon 2001), that has had many 
applications in Medicine and Social research. In other fields, as in Economics, the 
need of merging information has led to combine time series of different periodicity 
to improve prediction, a field now called nowcasting, name borrowed from the field 
of Meteorology (see Giannone et al. 2008). However, new methodologies are needed 
to combine in an effective way data from new sources, as texts or images, with more 
conventional sources of data to improve statistical analyses. For instance, Chen et al. 
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(2014) combine standard information with text information obtained by computerized 
searching of financial webs, to forecast the stock market. The increasing availability of 
new information from new sources will stimulate a broader Meta-Analysis method-
ology. For instance, in marketing research, we may want to combine the classical 
information we have about a customer with image analysis of his movements in the 
shop, as recorded by cameras, face analysis of his/her reaction to different stimulus 
and audios of the conversations between the customer and the shop attendant. 

2.2 Data visualization in high dimensions 

Visualization of large dimensional data sets is a difficult problem. The most often 
used approach is to make a graph in which (1) different variables are plotted against 
categories or (2) the relation between a set of variables is shown by scatter plots of each 
pair, as done in most popular statistical programming languages such as R or Matlab. 
A survey restrained to table data is de Oliveira and Levkowitz (2003), mostly from 
the computer science point of view, and emphasizing cluster analysis results. See also 
Munzner (2014), that covers visualization of tables, networks, and spatial fields. The 
use of videos to display quantitative information over time has become very popular 
after the pioneering work of Hans Rosling. His videos on TED talks (see https://www. 
gapminder.org/) are wonderful examples of the use of video animation to explain is a 
simple way complex problems. The area of visuanimation, see Genton et al. (2015), 
will have an increasing importance. See, for instance, Benito et al. (2017) for a video 
example of the performance of a classification rule to identify gender. 

Two important ideas to display multivariate data are Grand Tour and Projection 
Pursuit. Grand Tour (Asimov 1985) builds a sequence of low-dimensional projections, 
like a dynamic movie, of the data. Projection Pursuit tries also to find low-dimensional 
projections being able to show interesting features of the high-dimensional data by 
maximizing a criteria of interest. For instance, Peña and Prieto (2001a, b) proposed the 
kurtosis coefficient as an effective way to find clusters and outliers in high dimensions. 
Cook et al. (1995) proposed using a sequence of plots that are selected by Projection 
Pursuit criteria. In large data bases the space of all possible views is extremely large 
and a way to reduce the space to search is to define the objective that we would like to 
find. This is the approach followed by Targeted Projection Pursuit, in which the ideal 
view of the data is specified and the objective is to find a view as close as possible 
to this objective, see Faith et al. (2006). Criteria for judging different visualization of 
high-dimensional data are discussed by Bertini et al. (2011). 

A useful way to represent data in statistics is to use quantiles. Tukey (1970) intro-
duced the boxplot, based on the sample quantiles of univariate continuous distributions. 
The extension of this plot for multivariate data requires a definition of the multivariate 
quantiles and this can be done in many ways because the lack of a canonical order-
ing in Rm , for  m > 1. Small (1990) presents a survey of the field and we refer to 
Chernozhukov et al. (2017) for a recent approach on multivariate quantiles based on 
measure transportation that includes many references. For functional data, quantiles 
are related to the concept of depth, and López-Pintado and Romo (2009) introduced a 
useful way to make this connection. Given a set of m functions xi (t), where t belongs 
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to a closed interval in the real line, they define the band of order r (created by a subset 
of size r of these functions, 2 ≤ r ≤ m) as the space between the two functions 
obtained at each point t by taking the minimum and maximum at t of all the functions 
in the subset. Then, the (total) band depth of order r for a member of the set, x (t), is  
defined as the proportion of all the possible bands of order r that includes at all times 
the function x (t). A (modified) band depth of order r for a member of the set, x (t), 
is also defined as the average in all the possible bands of order r of the proportions 
of times in which x (t) is included in each possible band. The band depth leads to a 
natural ordering of the functions and calling x[1] (t) to the function with the largest 
depth and x[m] (t) to the one with the smallest value, the sequence x[1] (t) , . . . , x[m] (t) 
can be treated as order statistics and used to compute quantiles of the data set. This 
idea was used by Sun and Genton (2011) to propose functional boxplots, that have 
the median, or deepest function, in the middle, a central band defined by the band � � 
formed by the set x[1] (t) , . . . , x[m/2] (t) , where [m/2] is the smallest integer equal 
or greater than m/2, and the limits or whiskers and the outliers of the functional box-
plot are computed as in the standard one by taking the central band as the interquartile 
range. These methods have been generalized for images with the surface boxplots; see 
Genton et al. (2014) and for outlier analysis, see Arribas-Gil and Romo (2014). 

Quantiles in time series have had a limited application. For stationary time series, 
the population quantiles are constant lines with values determined by the common 
marginal distribution function. For non-stationary time series, the quantiles will be 
time series that follow the changes in the marginal distributions and are more informa-
tive. They can be estimated by locally smoothing as shown by Zhou and Wu (2009). 
However, quantiles have not been shown to be useful for visualization of large sets of 
time series. Peña et al. (2019b) proposed to define the empirical dynamic pth quantile 
for a set of possible non-stationary time series C = {xit , 1 ≤ i ≤ m, 1 ≤ t ≤ T } as 
the series of the set C that verifies 

� � ��
T � � � 

pq = argmin p |xit  − qt | + (1 − p) |xit  − qt | . (1)t 
qt∈C t=1 xit≥qt xi t≤qt 

For instance, the empirical median minimizes the L1 distance to all the series. It is 
shown that the minimization of (1) is equivalent to finding the time series in the set, x jt , ∗pthat is as close as possible to the pointwise quantiles, q , in some weighted L1 metric:t 

T � ∗pc jt  qt − x jt  . (2) 
t=1 

Note that solution of (1) grows with m2 but the one of (2) is linear in m. Thus we 
can compute empirical dynamic quantiles for large sets of time series and use these 
quantiles to make plots of the series. For instance, Fig. 2 shows the stock prices of 
the 99 most important markets in the world. This plot is not useful to see the general 
structure of the set. In Fig. 3 we see the plot of the three quartiles of the set of time 
series, which give a more useful idea of the general evolution of the set of time series. 
These three quartiles are also plotted in Fig. 2, but they are not useful for the problem 
of scale and it is useful to standardize the series before plotting them. 
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Fig. 2 World series of prices in 99 Stock markets in the period 2000 to 2015 

Fig. 3 Three quartiles of the World Stock Prices. The first is the Rusell 2000 index of USA, the second the 
MSCI index of the Pacific Zone, and the third the FTSE 100 of London 

Besides scatterplots and three-dimensional scatterplots, heatmaps are graphical 
representations of the sample correlation matrix that associates different colors with 
low and large correlations. Hierarchical clustering using these correlations as distances 
between variables can be used to identify groups of variables highly correlated. Parallel 
coordinates plots are another useful tool to visualize a large number of variables. The 
idea is to map the data into a two-dimensional plot with two axes where the variables 
are mapped onto the horizontal axis, while the observed values of each variable are 
mapped onto the vertical axis. Note that parallel coordinates plots are very sensitive to 
the order of the variables. The Andrews plot results from representing the observations 
in terms of Fourier series. The resulting plot is a graphical representation of the curves 
obtained that are expected to have a certain common behavior if the variables in the 
data set are related. A very popular representation of texts and documents is the word 

123 




� �

297 Data science, big data and statistics 

cloud. Essentially, the cloud shows the most frequent words in the texts that are shown 
with different sizes and colors in terms of their importance. In some sense, a word 
cloud can be seen as a kind of barplot for data taken from texts and documents. We 
refer to Cairo (2016) and Evergreen (2016) for recent books on data visualization with 
special emphasis on statistical graphics. 

2.3 Multiple hypothesis testing and the false discovery rate 

The traditional testing approach in statistics, and the one that is still usually taught in 
textbooks, is thatwewant to test some scientific hypothesis, thenwecollect the data and 
use it to test the hypothesis. However, the situation now in most applied studies is that 
we have a very large data set, then we imagine a possible set of hypothesis and then test 
all of them using some procedure. This change of paradigm creates two problems. The 
first one is the selection bias, i.e., the bias introduced in the analysis when the observed 
sample is not representative of the population under scrutiny. The second one is the 
multiple testing problem, i.e., the rejection of true null hypotheses when a large set of 
hypotheses are tested simultaneously. It is well known that if we want to test n hypothe-
ses simultaneously and each hypothesis is tested separately using some significance 
level α, the probability of wrongly rejecting at least one null hypothesis is 1−(1 − α)n , 
that goes to one very fast with n. Consequently, when the number of hypotheses to 
test is large, we will wrongly reject at least one null hypothesis almost surely. 

There are several ways to try to avoid the multiple testing problem. A common 
method was to use the Bonferroni bound that sets the significant level of the n tests at 
α/n. In this case, the probability of wrongly rejecting at least one null hypothesis is 
1−(1 − α/n)n that converges very fast to 1−e−α , that is approximately α, for  α small. 
Consequently, the Bonferroni bound is able to control the wrong rejections. However, 
it is very conservative, because one false null hypothesis will only be rejected if the 
associated p value is smaller than α/n, which will be very small if n is large. 

Alternatively, Benjamini and Hochberg (1995) proposed a procedure, posteriorly 
extended, see Benjamini (2010), to control the false discovery rate (FDR). The FDR 
is defined as E [V /R], where R is the number of rejected null hypotheses and V 
is the number of wrongly rejected null hypotheses. As the FDR is unobservable in 
practice, they proposed a procedure to ensure that FDR  ≤ q, if the test statistics 
are independent. Let p(1) ≤  · · ·  ≤  p(n) be the ordered p values corresponding to 
the n null hypotheses tested. Then, if k is the largest i for which p(i) ≤ i q, the  n 
Benjamini–Hochberg (BH) procedure rejects all the null hypotheses associated with 

nthe p values p(1), . . . , p(k). Note that q = i p(i) is the q value of the test, i.e., the 
minimum FDR at which the test may be called significant. The BH procedure is more 
powerful than the Bonferroni method but the cost is to increase the number of Type I 
errors. It can be shown that the BH procedure also controls the FDR at level q under 
positive dependence assumptions. Otherwise, it would be necessary to find the k that 
is the largest i for which 

i 
p(i) ≤ q. 

n n
j=1

1 
j 
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The BH procedure, and other alternatives with the same objective, has become 
very popular, with large number of tests. This can happen in several problems such 
as outlier detection and outlier-free goodness-of-fit testing, variable selection and the 
determination of local covariance structures, among others, when the dimension of 
the data set is very large. For instance, Riani et al. (2009) proposed a method for 
outlier detection in multivariate data sets with a robust estimation of the Mahalanobis 
distances between the observations and a robust estimate of the center of the data. 
The test statistic is computed for subsets of observations, and these authors proposed 
a controlling method to avoid the false detection of outliers. Cerioli et al. (2013) pro-
posed a robust method to test multivariate normality relying on Mahalanobis distances. 
For that the authors introduced a way to control the error rate when removing out-
liers of the observed sample based on the FDR. Barber and Candès (2015) studied 
how to identify a subset of relevant explanatory variables in regression models with 
a large number of regressors by controlling the FDR with knockoffs, which are new 
variables, obtained from the original ones, with similar correlations among then than 
the original ones. These knockoff variables are used as control to help in the selec-
tion of the relevant variables to predict the response. The method was extended to 
the case of arbitrary and unknown conditional models of any dimensions in Candès 
et al. (2016). Also, Sesia et al. (2018) extended this methodology to a rich family of 
problems where the distribution of the covariates can be described by a hidden Markov 
model (HMM). Cai (2017) reviews several papers dealing with multiple testing for 
high-dimensional covariance structures in large-scale settings including Cai and Liu 
(2016), who proposed an algorithm for simultaneous testing for correlations that has 
better performance than the BH procedure, and Liu (2013) and Xia et al. (2016), who 
proposed approaches for simultaneous testing for the existence of edges in Gaussian 
graphical models, and differential networks, respectively. 

The use of controlling methods to avoid multiple testing problems is also very 
popular for the analysis in large-scale microarray data with number of variables going 
from thousands to millions. For instance, Tzeng et al. (2003) proposed a matching 
statistic for discovering the genes responsible for certain genetic disorders. The test 
statistic is computed for many regions across the genome and these authors used the 
BH procedure to control the false association of genes and disorders. Problems in this 
area are the identification of differentially expressed genes in mapping of complex 
traits, based on tests of association between phenotypes and genotype, among other 
experiments. All of them share some general characteristics such as thousands or even 
millions of null hypotheses, inference for high-dimensional multivariate distributions 
with complex and unknown dependence structures among variables, and broad range 
of parameters of interest, such as regression coefficients in nonlinear models, measures 
of association, and pairwise correlation coefficients, among others. In these Big Data 
circumstances, the use of multiple testing procedures controlling false discoveries 
seems essential. 
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2.4 Analyzing heterogeneous data 

The possibility of fast and parallel computing is changing the way statistical models 
are built. Large data sets can be broken down into blocks to be processed and a central 
problem is to decide if they are homogeneous, so that the partial results obtained with 
each block can be combined in a single model, or are heterogeneous, and a mixture of 
models is required. Heterogeneity was usually considered in statistics as a two-model 
problem. Huber (1964), Box and Tiao (1968) and Tukey (1970) assumed that the data 
have been generated by a central model with some possible fraction of outliers coming 
from a different distribution, that is 

x ∼ (1 − α) F (x) + αG (x) 

where F is the central distribution, usually normal, and G is an arbitrary contaminating 
distribution. The large literature on diagnosis and robust statistics has been very useful 
to find outliers in large data sets, and it will continue to be important in the future. 
For instance, many communications and controlling devices automatically collect data 
using wireless sensor networks. However, sensor nodes sometime fail to record the 
data correctly (see Paradis and Han 2007, for a survey of this problem) due to depletion 
of batteries or environmental influence, and congestion in communication may lead to 
packet loss. These failures will produce outliers in the data generated by these sensors 
and some data cleaning method should be applied before building any model for the 
data, as it is well known that outliers can modify completely the conclusions obtained 
from statistical analysis. See Rousseeuw and van den Bossche (2018) for a recent 
analysis of finding outliers in data tables and Maronna et al. (2019) for an overview 
of robust statistics. This problem is also important in dynamic situations and Galeano 
et al. (2006) and Galeano and Peña (2019) have studied the detection of outliers in 
large sets of time series. 

Although the idea of a central distribution is useful, it is too restrictive for many 
of the usual large data sets. A more appropriate representation is to assume that we 
have a mixture of models and, for that reason, cluster analysis is becoming a central 
tool in the analysis of Big Data. Many useful procedures are available for clustering. 
Partitioning algorithms, such as K-Means, see MacQueen (1967), PAM or K-Medoids, 
see Kaufman and Rousseeuw (1990), MCLUST, see Banfield and Raftery (1993), 
TCLUST, see Cuesta-Albertos et al. (1997), extreme kurtosis projections, see Peña 
and Prieto (2001a), and nearest neighbors medians clustering, see Peña et al. (2012), 
are useful for small data sets, but they have limitations when p and n are large. Some 
alternatives for large data sets have been proposed in the computer science literature; 
see Kriegel et al. (2009) for a review. Hierarchical methods can also be very useful, 
but they need to be adapted for large data sets. Two key problems in clustering high-
dimensional data are: (1) the presence of irrelevant variables for clustering, because 
they negatively affect the efficiency of proximity measures; and (2) the dimensionality 
curse, which produces a lack of data separation in high-dimensional spaces. The first 
problem has been tackled by variable selection and the second by dimension reduction. 

Variable selection can be carried out by adding in the estimation criterion some 
penalty function, as in the Lasso method. For instance, in model-based clustering, we 
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can maximize the likelihood of the mixture of normals adding some penalty function 
to introduce variable selection (see Pan and Shen 2007; Wang and Zhu 2008). Also, 
we can select variables as a model selection problem, as proposed by Raftery and 
Dean (2006). Other variable selection approaches is due to Fraiman et al. (2008), who 
proposed an interesting method to detect the noninformative variables in clustering. 
Witten and Tibshirani (2010) developed a cluster algorithm that can be applied to 
obtain sparse versions of K-means and hierarchical clustering. Some comparisons of 
these methods and other related references can be found in Bouveyron and Brunet-
Saumard (2014), who present a review ofmodel-based clustering for high-dimensional 
data, and in Galimberti et al. (2017). 

Dimension reduction is carried out by identifying some subspace which includes 
the relevant information for clustering. See Johnstone and Titterington (2009), for 
interesting insights on this problem, and Bouveyron and Brunet-Saumard (2014), for 
a survey of the field. See also Cook (2018) for dimension reduction in other problems. 

Clustering time series is becoming an important tool for modeling and forecasting 
high-dimensional time series. See Aghabozorgi et al. (2015) and Caiado et al. (2015) 
for recent surveys of the field. High-dimensional time series are usually analyzed by 
Dynamic Factor models (see Peña and Box 1987; Stock and Watson 2002; Forni et al. 
2005). However, these factor models have often cluster structure, that is some factors 
are general and others are group specific and finding clusters in time series that have 
a similar dependency will be an important objective. Some recent works in this field 
are Ando and Bai (2017) and Alonso and Peña (2018). 

The idea of heterogeneity has been extended to all branches of statistics, by assum-
ing differentmodels in different regions of the sample space. For instance, in regression 
problems, we may assume the model 

G �   2yi |xi ∼ αgN xi βg, σg , (3) 
g=1 

where αg ≥ 0 and G
g=1 αg = 1. This model has been studied extensively both from 

the Bayesian and the likelihood points of view. When the number of groups is known, 
we have some reasonable initial estimate for the parameters in the different regimes 
the model can be estimated by MC2 methods. However, when this information is not 
available, the estimation of this model is a difficult problem. See Frühwirth-Schnatter 
(2006) andNorets (2010). In time series, Tong andLim (1980) introduced the threshold 
autoregressivemodels, which have been very useful for modeling nonlinear time series 
(see Tong 2012; Tsay and Chen 2018). 

With Big Data heterogeneity, instead of being a particular aspect of the data, should 
be the standard assumption. Thus, there is a need to reconsider the classic set up 
followed in most basic statistical courses and emphasize mixture models and cluster 
analysis from the first week of teaching. 
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2.5 Automatic procedures for model selection and statistical analysis 

The first change that large data sets have introduced in statistics is the need for auto-
matic procedures for model selection. We can fit a regression model with the care 
of a craftsman, checking for the best combination of the explanatory variables, using 
the residuals to do diagnosis and identify nonlinearities and monitoring carefully the 
forecast performance. However, when we need to fit thousands of possible nonlinear 
regression models we cannot rely on these careful step by step strategies to build each 
of these models and we have to use automatic procedures. The statistical methods 
developed first by Pearson and Fisher in the first half of the 20th century and later by 
Box, Cox, and Tukey, among others, in the second half of the previous century, were 
thought for small data sets and emphasized the detailed analysis in each particular 
problem. A breakthrough in building models was the automatic criterion proposed by 
Akaike (1973) to select the order of an autoregressive process. His criterion, AIC, pro-
vides a general rule to select among complex models. It can be said that AIC was the 
first step toward artificial intelligence in statistics. A few years later, Schwarz (1978), 
from a Bayesian approach, proposed the now called BIC criterion for model selection. 

Suppose that we have a data matrix X of n observations and p variables and that we 
have fitted different models fi (X|θ i ) which depend on a vector of parameters θ i and � � 
let ci = dim (θ i ). Calling fi θ i to the maximum value of the likelihood function, 
these criteria select the model that minimize 

� � 
M = − log fi θ i + P (n, ci ) , 

where P (n, ci ) is a penalty function that may depend on n and ci . For  AIC,  
P (n, ci ) = ci , and for BIC, P (n, ci ) = (ci log n) /2, and it is well known that 
the AIC criterion is asymptotically efficient, i.e., selects the model with minimum out 
of sample expected error, whereas BIC is consistent, i.e., selects asymptotically the 
true model with probability one (see Yang 2005, for an analysis of these properties). 
It is well known that the results of model selection can be very different from the ones 
obtained with significant tests. As an example, suppose we compare two regression 
models: the first contains p variables and the second includes an additional variable, 
so that it has p + 1 variables. The BIC criterion will select the first model if: 

2 2BICp = n log σ + p log n < BICp+1 = n log σp+1 + ( p + 1) log n, (4)p 

that is when σp 
2/σp 

2 +1 < n1/n , where σp and σp+1 are the estimated residual variances 
with p and p + 1 variables, respectively. A significant F test at α significance level 
will check the coefficient of the additional variable in the second model. This test 
is equivalent to the standard t test for the significance of the coefficient of the new 
variable and the F statistic can be computed as 

� � 
σ 2 p

F = (n − p − 2) cn,p − 1 . (5) 
σ 2 p+1 
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where cn,p = (n − p − 1)/ (n − p − 2). Then, the simplest model will be chosen 
if this value is smaller than the selected critical value F1,n−p−2,α . Usually, the value 
of α is chosen a priori, a common level is α = 0.05, and the simplest model will be 
accepted, or the additional variable will be rejected, if F < F1,n−p−2,α . Therefore, 
both procedures check the value of σ 2/σp 

2 +1, but the decision with the BIC criterion p 
depends strongly on the sample size, whereas the one with the significance test will 
depend mostly on α. For instance, if the sample size is larger than 100, p/n is small 
and α = 0.05, then F1,n−p−2,α ≈ 3.85. Note that the value of the F statistic that 
makes BICp = BICp+1 is, assuming cn,p = 1, 

F∗ (n) = (n − p − 2) n1/n − 1 (6) 

and we have that F∗ (100) ≈ 4.5, whereas F∗ (100,000) ≈ 11.5, for p/n small. Thus, 
with the significant test we usually reject the additional variable if F < 3.85, whereas 
with the BIC criterion we will reject it for F < 4.5, if n = 100, and for F < 11.5, if 
n = 100,000. 

TheBICcriterion canbe interpreted as a significance testwhere theα level decreases 
when the sample size increases. Thus, in practice, the results of model selection crite-
ria for large sample size are very different from those of significant tests in comparing 
models with different number of parameters. As it has been discussed in Subsect. 2.3 
statistical tests were not designed to be applied with very large data sets, or to com-
pare models with different number of parameters. For this reason, model selection 
procedures are more useful for selecting models with Big Data. For instance, we have 
checked that the top 10 articles in the list of the 25 most cited statistical articles (Ryan 
andWoodall 2005) have increased their cites between 2005 and 2015by a factor around 
2, and the most cited article in statistics, Kaplan and Meier (1958), had gone from 
around 25,000 cites in 2005 to 52,000 in 2015. However, the two seminal articles that 
introduced automatic criteria for model selection have multiplied their cites by more 
than 10 times in this period. More precisely, from 2005 to 2015, Akaike (1974) has 
gone from 3400 to 38,000, and Schwarz (1978) from 2200 to 33,000. The existence of 
these criteria formodel selection has stimulated statistical automaticmodeling inmany 
fields. For instance, Gómez and Maravall (1996) developed the programs TRAMO 
and SEATS for automatic modeling and forecasting of time series that have become 
very popular in economic and business applications. The very popular book on statis-
tical learning by Hastie et al. (2009) illustrates the usefulness of automatic modeling 
in many different statistical problems. 

The AIC and BIC criteria were derived as asymptotic approximations when the 
sample size goes to infinity. They are less useful when the number of variables, p, is  
very large, even greater than the sample size, n, and new criteria for model selection 
have been proposed when both p and n go to infinity. In fact, the emergence of Big Data 
has created new asymptotic theories when both p and n are large. For instance, Chen 
and Chen (2008) generalized the BIC penalty term for situations, as in gene research, 
in which we have much more variables than observations, p > n. This problem also 
appears in large panels of time series in which we have also the number of series, 
m, can be much large than the number of observations in each time series, T . Bai  
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and Ng (2002) have proposed three consistent criteria for these problems, where the 
penalty term depend on both p and n. Suppose we compare dynamic factor models 
with different number of factors, then the first modified BIC criterion proposed by Bai 
and Ng is 

� � 
mT2IC1 (p) = Tm  log σp + p (m + T ) log , (7) 

m + T 

where p is the number of factors, and σ 2 is the average residual variance of the fitted p 
factor model. Note that the number of observations is n = mT and, the number of 
estimated parameters is pT , for the factors, and mp, for the loading matrix. Therefore, 
comparing (4) and (7), we see that they have the same form but the penalization 
is different, instead of log (mT ), that will be the equivalent to n in (4), we have 

log mT . For instance, for T = m, the criterion is m+T 

� � 
2IC1 (p) = T 2 log σ + 2pT log 

T 
,p 2 

and the penalty for an additional factor is smaller than that with standard BIC criterion 
(4). This is reasonable because the minimum value of m and T fix the rank of the 
system: if m > T , the rank of the covariance matrices is T , while if T < m, the rank 
is m. See Peña et al. (2019a) for the use of these criteria to build automatic forecasting 
procedures with dynamic principal components for large sets of time series. 

An alternative method to derive automatic model selection procedures is cross-
validation (CV), introduced by Stone (1974), as a universal nonparametric rule for 
model selection. Suppose we have data (yi , xi ), for  i = 1, . . . , n, and we want to 
compare several predictor models for y based on the covariates x. We use  the data to  
estimate different models, j = 1, . . . ,M , leading to predictions of the form yi ( j) = 
g j (x)with estimation error i

n 
=1 (yi − yi ( j))2. To compare these models, we would 

like to obtain independent estimates of the forecasting error. To do so, we divide the 
data into two parts, an estimation or training sample and a validation or prediction 
one. Then we use the first part to estimate the model and the second to check the 
out-of-sample performance of each prediction rule. The model selected will be the 
one with best out-of-sample forecasting performance. In practice, there is no clear 
criterion to split the sample into the estimation and validation parts and Stone thought 
of a way of estimating the validation error with the maximum number of points. He 
defined leave-one-out cross-validation (LOOCV) as a procedure in which we estimate 
the model in a sample of size n − 1 and forecast the deleted observation. This out-
of-sample forecast can be applied to the n observations in the sample to compute a 
cross-validation forecasting error with all the sample points. See also Geisser (1975) 
for a similar approach.Multifold cross-validation, leaving n0 observations out, training 
the procedure in n − n0 data, and forecasting n0 has been found to work better than 
LOOCV in many settings (see Zhang 1993; Shao 1993). As this requires to compute � � nall n0 

samples, and for large n, this number is huge, some approximations are made. 
See Arlot and Celisse (2010) for a survey of this field. 
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Model selection and cross-validation are very related. Stone (1977) was  the first to  
prove the asymptotic equivalence of cross-validation and AIC and many articles have 
compared these two approaches, see Arlot and Celisse (2010), for many references. 
The main argument for CV is its generality: it has been applied in many problems, 
including regression, discriminant analysis, cluster analysis, and density estimation, 
among others. On the other hand, the computational cost is usually higher, and when 
there is a clear family of models to be tested, the model selection approach works 
usually better. Also, cross-validation was derived under the assumption of independent 
data, whereas model selection has no this limitation. Thus, it is not obvious how to 
apply cross-validation to time series, spatial data and other dependent data. A few 
works have tried to extend these ideas to correlated data. For instance, Peña and 
Sánchez (2005) proposed a multifold validation procedure for ARIMA time series, 
and Bergmeir and Benítez (2012) compared different procedures in real data sets. 
However, this problem requires further research. 

2.6 Estimation procedures in high dimension with sparse models 

Many statisticians were puzzled when James and Stein (1961) proved that for p ≥ 4, 
the maximum likelihood estimator of the vector of population means, μ, the  sample  
vector mean, x, is inadmissible: It has always larger mean-squared error than the 
shrinkage estimate 

μ = αx + (1 − α) 1px, (8) 

1 1 where 0 < α < 1, x is the sample mean vector, and x = px where 1
  
p = (1, . . . , 1). p

This implies that we can improve the ML estimate by giving some arbitrary weight to 
the vector of means computed assuming that all the components of the vector have the 
same mean. Note that this will also be the Bayesian estimate for this problem assuming 
a common prior μ01p for the distribution of μ. The shrinkage coefficient, α, depends 
on the variability among the components of x. A similar results was discovered a few 
years later for the least squares estimate β LS  in the regression model Y = Xβ + U. 
It can be shown that when we have a large number of predictors, k, we can always 
improve the least-squares estimator by using the shrinkage estimate 

R 
β = (X X + λA)−1X Y 

where λ >  0 and A is a positive definite matrix. Taking A = X X we obtain β R = 
(1 + λ)−1 β LS , which is a James-Stein estimator that shrinkage the LS estimate toward 
zero. Taking A = I, the Ridge regression estimate introduced by Hoerl and Kennard 
(1970) is obtained. An interesting property of this estimate is that it can be obtained 
as a solution to the problem 

� � 
2 + λ β 2min Y − Xβ (9) 

β 

where · represents the Frobenius norm of amatrix or the Euclidean norm for a vector. 
If we have many predictors we expect that several of them will have a small effect 
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in the response and then their regression coefficients will be close to zero. Imposing 
a penalization on the norm of the vector can improve the accuracy of the estimation. 
With many predictors, a better penalized function is 

min Y − Xβ 2 + λ β (10) L1
β 

where now the penalty depends on the L1 norm. The advantage of (10) with respect 
to (9) is that it will force small coefficients toward zero, improving the sparsity of the 
final estimate. This is the lasso estimate introduced by Tibshirani (1996). This idea 
of imposing a penalty function in the estimation of the parameter is usually called 
regularization and has many applications in statistics for sparse data, that is, when 
only a relatively small number of parameters are required to explain or forecast the 
data. In these cases, we can estimate these parameters effectively, using the lasso in 
an equation with all the possible parameters. Problem (10) is convex and the solution 
for a given λ can be easily found (see Hastie et al. 2015). The parameter λ is usually 
chosen by cross-validation. For that, the sample is split into h groups with h > 1. Then 
we take the first group as test or estimation group and the remaining h − 1 groups 
as validation or training sample. The model is estimated in the estimation group for 
a range of values of λ. Then this fitted model is used to predict the responses in 
the h − 1 validation groups and computing the mean-squared prediction errors for 
each value of λ. The same process is repeated for the 2nd,…,hth group, obtaining h 
different estimates of the prediction error and λ is chosen as the value with smallest 
average prediction error. The lasso approach and its generalizations, such as elastic net, 
group lasso, and fused lasso (Hastie et al. 2015), have been applied to many sparse 
problems such as sparse covariance matrix estimation, see Friedman et al. (2008), 
Bickel and Levina (2008), Cai and Liu (2011), and Cai and Zhuo (2012), among others, 
sparse principal component analysis, see Shen and Huang (2008) and Candès et al. 
(2011), and canonical correlation analysis, see Witten et al. (2009). Hastie et al. (2015) 
includes applications of regularization methods in logistic regression, generalized 
linear models, support vector machines, discriminant analysis and clustering. 

Also, time series shrinkage estimates have been found useful in improving forecasts. 
García-Ferrer et al. (1987) showed that the univariate forecasting of macroeconomic 
variables can be improved by using pooled international data. This is a similar result 
to (8), and has the form 

yP = αyt + (1 − α) 1ytt 

where yt is a vector of forecast of time series computed by using linear univariate 
1models and yt = p 1

  
pyt is the mean of the forecasts. Peña and Poncela (2004) showed  

that this class of pooling forecast can be generated by a dynamic factor model. Lasso 
estimation has been also applied to times series, see, for instance, Basu and Michailidis 
(2015). 

Another approach in which the L1 norm is used is compressive sensing, a signal 
processing tools in which we want to find linear combinations of many variables 
that keep all the relevant information. Donoho (2006a, b) proved that the minimal 
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L1 norm is the sparsest solution in many of these problems of linear data reduction. 
See also Candès et al. (2006) and Candès and Tao (2006). This approach has opened 
the way to computing random projections in large dimensional spaces to find new 
variables, linear combinations of the original ones with good explanatory power. See, 
for instance, Guhaniyogi and Dunson (2015) for a Bayesian application to regression 
problems. 

2.7 Analyzing networks and incorporating network information into statistical 
models 

The extreme popularity in recent years of social networks, such as Facebook, Twitter, 
Linkedin, and Instagram, has placed the focus of many researchers and companies 
on the analysis of network data. Networks can be found in many diverse fields. For 
example, technological networks, which include transport networks, such as air routes, 
energy networks, such as electricity networks, and communication networks, between 
interactive communication devices. Biological networks represent biological systems, 
such as networks of neurons, or information networks, that describe relationships 
between information elements, such as citing networks of academic articles. The 
information contained in a network is very rich in itself and has led to what is called 
network science, see Kolaczyk (2009) and Barabási (2016). This information can 
also be of tremendous utility for the enrichment of usual statistical models. Before 
discussing this new field, we briefly describe some network features and problems that 
can be relevant for this goal. 

The mathematical basis behind network analysis is graph theory that dates back 
to 1735 when Leonard Euler solved the famous problem of the seven bridges of 
Königsberg. Graphs offer a common framework to analyze networks that may have 
many different characteristics in terms of form and size, among many other features. 
Essentially, a graph consists of a list of elements usually called vertices or nodes, and 
the connections between them, usually called edges or links. The edges of a network 
can be directed or undirected, depending on whether they have a direction, and/or a 
weight, that somehow measures the strength of the edge. Two relevant problems in 
network analysis are vertex centrality and community detection. On the one hand, 
measuring vertex centrality is important to identify the key vertices in the network. 
For instance, in social networks, the most important vertices are used to identify the 
network influencers. Probably, the easiest way to measure vertex centrality is through 
the vertex degree. Other alternatives are the closeness centrality, the betweenness 
centrality, and the eigenvector centrality. On the other hand, community detection is 
important to identify set of vertices well connected among them, and relatively well 
separated from vertices in other sets. The two main community detection algorithms 
are hierarchical clustering and methods based on network modularity. See Kolaczyk 
(2009) for a complete overview on network features and problems. 

Vertices and edges have certain characteristics called attributes. For instance, in a 
social network in which the vertices are people and the edges friend relationships, 
attributes of the vertices can be age, gender, marital status, and personal likes, among 
others, while attributes of the edges can be the number of private messages between 
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them and the duration of the relationship, among others. Now, if we want to classify 
new members of the network in terms of a certain variable, the inclusion of network 
information, such as vertex centrality and/or communities, will improve the classifica-
tion power of standard methods. Section 4.1 below presents an example in which the 
inclusion of network information improves the power of several statistical methods 
used to solve three different problems regarding bank customers. 

There is a recent growing interest in the interaction between statistical methods 
and network analysis. For instance, Gaussian graphical models are frequently used for 
modeling the conditional dependence structure of large dimensional systems. This is 
because the structure of an undirected Gaussian graph is characterized by the preci-
sion matrix of the distribution of the random variables, see Lauritzen (1996). Accurate 
estimation of high-dimensional covariance, correlation and precision matrices under 
Gaussian graphical models and differential networks have been carried out by several 
authors including Meinshausen and Bühlmann (2006), Cai et al. (2011), Zhao et al. 
(2014), Ren et al. (2015), and Cai (2017), among many others. It is important to note 
that all these papers consider regularization methods, such as the Lasso mentioned 
in Sect. 2.6, to determine the existence of relationships between variables, or equiv-
alently, the existence of edges between nodes in the associated graph. In the time 
series setting, Zhu et al. (2017) proposed network vector autoregressions to analyze 
the dynamic behavior of networks evolving over time. These network vector autore-
gressions resemble the vector autoregression models, where a vector of time series is 
explained in terms of its past, some covariates and independent noise. The idea is to 
explain some attribute in terms of past information of the nodes and their neighbors, 
as well as certain covariates and independent noise. Additionally, Wei and Tian (2018) 
have considered a similar approach in regression problems by proposing a network 
regression model. The idea is to understand or predict the effects of network systems 
on certain response variables. Estimation of network vector autoregressions and net-
work regression models can be carried out with the combination of least squares and 
regularization methods. As the previous papers suggest, there is a wide field of analysis 
of the interaction between classical statistical models and networks that can be very 
useful for improving the analysis in both fields of interest. 

3 The emergence of data science 

During most of the last century statistics was the science concerned with data analysis. 
Once the objective of the study was defined, statistics has a role in all the steps of data 
analyses: (1) collecting the data, by sample surveys or designing experiments; (2) 
describing the data, by plots and summary statistics, and selecting a possible model 
or a set of models; (3) estimating the model parameters, by maximum likelihood or 
Bayesian estimation, and making validation of the model or model selection; and 
(4) interpreting the results. Only in the first and last part of this process, defining 
the problem and interpreting the result, the main role correspond to people from the 
subjectmatter field of the application. The emphasis of this methodologywas on model 
building and understanding the relation among the variables involved. The growth of 
data availability in the last part of the last century stimulated the need of solving 
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prediction problems in many areas that cannot be solved by the standard statistical 
methods. 

Breiman (2001), who opened new ways for classification with CART and random 
forests, explained the two cultures of data analysis that were emerging at the end of 
the 20th century: Modeling, the core of statistical courses, and Forecasting, that was 
required in many fields with new types of data. In fact, the growth of data availability 
has been reducing the role of statistics in the data analysis process. First, as explained 
in Sect. 2.1, new types of information in engineering and computer science have been 
considered, requiring new tools for classification and prediction with a different phi-
losophy to standard statistical methods. These new approaches, as neural networks, are 
providing solutions in the analysis of images or sounds where classical statistics have 
had a limited role. Second, when data are generated continuously with sensors or peo-
ple activity recorded in an automatic way, the problems of data storing, handling and 
processing become very important, and scientists from computer science are not only 
taking an important role in making the data available for analysis, but also in devel-
oping new tools for analysis. For instance, the field of recommendation analysis, that 
uses previous people choices to forecast future choices, have been mostly developed 
in computer science. Third, new optimization requirement from the new problems, 
from support vector machines to Lasso, as well as the growing importance of network 
data has led to a closer collaboration of statistics and operations research, a field that 
splits from statistics in the second half of the 20th century and that has developed 
procedures very relevant for the needs of Big Data. For instance, linear programming 
to solve the L1 optimization problems that often appear in finding sparse solutions 
in statistics. These changes have expanded the field of data analysis to create what 
is called data science, as the integration of ideas from statistics, operations research, 
applied mathematics, computer science and signal processing engineering. Donoho 
(2017) and Carmichael and Marron (2018) present very interesting discussions of the 
evolution of this field. 

The idea behind artificial intelligence is that the process of human thought can 
be mechanized. This is a broad concept that leads to many different research areas. 
In particular, machine learning is the part of the artificial intelligence that allows 
machines to learn fromdata bymeans of automatic procedures. Probably, the first paper 
mentioning the termmachine learningwas Samuel (1959)whowrote a program to play 
the game of checkers. The program improved the results by analyzing the moves that 
leads to winning strategies. Just one year before, Rosenblatt proposed the perceptron, 
i.e., the first neural network for computers that simulates the thought processes of the 
human brain. Since them, many machine learning researchers have proposed data-
driven procedures to learn from data in an automatic way. The main focus of these 
analyses are on supervised and unsupervised learning problems, known in statistics 
as discrimination and clustering problems, respectively, and on dimension reduction 
techniques. 

Some of the most popular tools for supervised classification in the machine learn-
ing area along the years includes the perceptron (see Rosenblatt 1958), the k-nearest 
neighbors (k-NN) algorithm (see Cover and Hart 1967), the classification trees (see 
Breiman et al. 1984), the feedforward neural networks (see Hornik 1991), the sup-
port vector machines (see Cortes and Vapnik 1995), the naïve Bayes classifiers (see 
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Domingos and Pazzani 1997), the random forests (see Breiman 2001), and the deep 
learning methods (see LeCun et al. 2015), among others. See also Genton (2001) 
for an overview of kernels, that are frequently used in machine learning methods for 
supervised classification, from a statistical perspective and Lam et al. (2018) for an 
efficient implementation of support vector machines in high dimension low sample 
size settings. On the other hand, some popular unsupervised classification methods 
in machine learning are subspace clustering, pattern-based clustering, and correlation 
clustering methods, see Kriegel et al. (2009), for a review. Finally, Kernel principal 
component analysis (KPCA), see Schölkopf et al. (1997), independent component 
analysis (ICA), see Hyvärinen and Oja (2000), and partial least squares, see Cook 
(2018), are popular approaches to the dimension reduction problem. 

The success of machine learning methods is the integration of some useful methods 
developed for large data analysis with the ones created in statistics, operations research 
and applied mathematics. For instance, the support vector machines and the regular-
ization methods heavily rely on solving more or less complex optimization problems. 
Also, many methods of network analysis, such as community detection, involve the 
intersection of these areas. Computational efficient implementation of all these meth-
ods in large-scale settings is an important issue. As a consequence, a procedure that 
may not be particularly attractive from a theoretical point of view, may have its space 
if it allows to solve a problem that otherwise would not have an easy solution. For 
instance, the naïve Bayes classifiers, a family of procedures very little appreciated 
in the statistical community, are very popular in large-scale supervised classification, 
where other more theoretical attractive methods are not applicable or may have worse 
performance than expected in such large-scale settings. 

The range of applications of machine learning is somehow broader than that of 
statistics, mostly restricted to well structured data sets in the form of tables. For 
instance, texts and documents classification, image, video and speech recognition, 
natural language understanding and language translation, among other issues, are the 
natural domain of applications in the artificial intelligence and machine learning areas. 
Many of the advances on these areas comes from substantive real problems such as 
automated brain tumor detection from images. However, statistics can be very useful 
when the objective is to understand the relationship between the variables involved 
and to make models able to describe the problem and generate forecast in these situa-
tions. This explains why statistics is the support of many sciences such as demography, 
economics, environmental science, medicine, and psychology, among many others. 
Statistics offers a rigorous process for analyzing data that includes important steps such 
as data sampling, exploratory and descriptive analysis, inference, prediction, measure-
ment of uncertainty, and interpretation. Many of these steps are usually ignored by 
the machine learning community, mainly focused in obtaining automatic predictions 
from data. 

We believe that we are going to see a convergence of these different approaches 
of data analysis under the data science umbrella and that this process will stimulate 
scientific advances in all areas of knowledge. Statistical analysis will continue to 
be the core of scientific modeling with well structured data, but machine learning 
and artificial intelligence will create new forecasting procedures in problems where 
the relationship between the output and the inputs available for its prediction is not 
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well understood. On the other hand, statistical ideas will be used to decompose and 
understand the forecasting rules created in other areas, to identify the importance of 
the more relevant variables and to split the signal from the noise. All these advances 
will be the subject of data science. 

4 Two examples of big data analysis 

In this section, we will present two examples of analyzing Big Data using several of the 
procedures explained in the previous sections. They use data sets of several millions of 
records and both were carried out on demand of a private company. The first example 
analyzes the network of more than five millions of customers of Bank of Santander 
(BS) in Spain. In this project, in addition to building the network and using network 
variables for improving the performance of forecasting models, we have required new 
data visualization tools for networks, heterogeneity and cluster analysis, automatic 
model building, high-dimension estimation, multiple testing and outlier analysis. The 
second application is concerned with forecasting customer loyalty, using data of more 
than eight millions of customers of a chain of supermarkets in Spain, DIA. In this study 
we have developed new ways of visualizing large sets of time series, built forecasting 
procedures combining cross-section anddynamic information, estimatedmanymodels 
using automatic procedures and dealt with several sources of heterogeneity, including 
cluster and outlier analysis. Both studies have been carried out with other members 
of the Institute UC3M-BS of Financial Big Data (IFiBiD), which are listed in the 
acknowledgements, and in close collaboration with teams in BS and DIA. 

4.1 Customers network analysis 

4.1.1 The problem and the data 

The main objective of the project was to investigate whether the information contained 
in the BS data base of its customers can be analyzed as a network useful to guide BS 
future actions and policies. Specifically, the project focused on solving three relevant 
issues: (i) to build the BS customer network and use it to analyze the intensity of 
economic relations between customers, the groups formed by similar clients and the 
centrality and importance of each customer; (ii) to develop a decision support system 
for helping BS managers to decide the sequence of customers to contact to reach a 
designed target; and (iii) to develop statistical models to explain the entry and exit in 
default of different types of BS customers (companies, freelancers and individuals). 
For space limitations, we will focus mostly in the third issue and give a very brief 
summary of the results on the first two issues. 

To carry out the project, BS allowed us to access to totally anonymized information 
on several millions of customers and a total of 81 millions of transactional relation-
ship between them in three periods of time: December 2014, June 2015 and December 
2015, respectively. The whole set of information was split in three categories: (1) cus-
tomer profiles, including age, type of consumer, relationship with BS, products and 
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services contracted with BS, such as payrolls, credit cards, receipts,…, and resources, 
such as amount of money in accounts, savings insurance, deposits or funds; (2) rela-
tionship between customers, including different types of relationship categories, the 
direction of the relationship, and indicators of the relationship intensity; and (3) cus-
tomer default status, including the amount of the default, if any. A careful treatment 
of this information led to the identification of many outliers that correspond mostly to 
changes in the way the data was recorded, typing errors or other mistakes. As a result of 
this cleaning, three structured databases of debugged and reliable BS customers were 
constructed corresponding to each of the time periods considered. These databases, 
corresponding to almost 5 millions of customers and 6, 3 millions of relationships, 
were used to build a customer network to analyze the three issues considered. 

4.1.2 Network analysis 

The first step of the project was to analyze the structure of the BS customer network. 
For that, we constructed a graph formed by vertices and edges, where each vertex 
represents a BS customer (companies, freelancers and individuals), and each edge 
represents at least one relationship or flow between two customers. As two costumers 
can be related in many ways, all possible edges are summarized in a single one, that 
has as attributes all types of existing relationships. In addition, each edge is valued 
by a weight function taking values in the interval [0, 1], to represent the strength 
of closeness between the customers that it unites. That is, a weight value close to 1 
represents the largest closeness between the twocustomers.We focusedondetermining 
the topology of the network to understand the mechanisms underlying the aggregation 
of new nodes in the network. For this, several characteristics were used, including 
measures of the centrality of the customers in order to quantify the relationships of 
power, protagonism, trust, etc…, and the detection of specific communities that may 
have interesting characteristics. This is important to determine which customers and 
communities are the most relevant within the network. On the one hand, we used 
measures such us the vertex degree, the eigenvector centrality and the concentration 
degree (see Kolaczyk 2009) that allowed us to find the most influential customers 
through their connections in the network. The main conclusion of this analysis is 
that new customers often relate to highly connected customers that represent centers 
of influence in the network. Therefore, the maintenance and strengthening of these 
influential customers are of primary importance for the preservation of the structure 
of the network and its expansion. On the other hand, we used community detection 
algorithms, such as the one proposed by Blondel et al. (2008), specially suited for 
very large networks, to find groups of customers with a strong mutual relationship. 
A total of approximately 120, 000 communities were detected. The vast majority of 
communities have a very small size. Tohave an idea, the three largest communities have 
approximately 250, 000, 156, 000 and 94, 000 customers. An in-depth study of the 
most important communities allowed us to identify common characteristics among 
the customers that compose them that helped BS to design strategies and products 
specifically addressed to these groups. Also, the network offered new insight about the 
importance of the customers for BS. For example, commercial banks usually classify 
their customers for the amount of assets or deposits in the bank. However, a better 
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Fig. 4 Two large communities connected by a key customer in the BS network 

classification can be obtained by thinking in the loss for the bank if a customer moves 
to another bank. To estimate this effect we need to consider, in addition to the assets, 
the relation that this client has in the network and the effect that leaving it can have in 
other clients, that depend on his/her connections in the network. Figure 4 illustrates 
this situation, where two large communities are connected by a key customer. 

The second step of the project was to develop a methodology to determine the best 
sequence of customers that a BS manager should contact to reach a target starting from 
any client in the manager’s portfolio. With this methodology, the BS would acquire 
new customers or sell additional products to existing ones. For that, a decision support 
system (DSS) was developed that provides managers of BS with possible paths to 
follow to attract new customers sorted by probability of success. These probabilities 
were determined with the information given by the customers’ information as well as 
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with the network information. A complete description of the DSS, including the way 
in which the probabilities of success of different paths are obtained, can be found in 
Quijano-Sánchez and Liberatore (2017). 

4.1.3 Improving prediction with network variables 

The third step of the project was to analyze the default status of different types of 
BS customers. For that, we developed a set of statistical models for investigating the 
entry and exit in default of different types of BS customers.Models were constructed to 
explain the customers’ default status in two temporary moments of the year 2015 (June 
and December, respectively) using a wide set of explanatory variables that include: 
(i) services and products contracted with BS; (ii) resources in BS; (iii) situation and 
connections within the BS customer network; and (iv) changes in all these variables 
with respect to the previous period. Importantly, note that we are using information 
from the customers themselves but also new information on the situation of the cus-
tomers within the BS customer network. For instance, whether the customer has direct 
or indirect connections with default customers. Additionally, the models were built for 
different groups of customers that result from segmenting them in terms of three types 
of customers, i.e., companies, freelancers and individuals, and four types of linkages 
with BS, i.e., very strong, strong, weak, and very weak. Consequently, we needed to 
built a total of 24 models, resulting from the combination of 2 periods of time, 3 types 
of customers, and 4 types of linkages with BS. The number of customers in each group 
ranges from about 50, 000, for freelancers with very weak linkage with BS in June 
2015, to around 3 millions, for individuals with weak linkage with BS in June 2015. 

The generic model chosen to explain the customer default is logistic regression 
for two main reasons. First, as we will see, logistic regression allows to determine 
the importance of each of the variables used to explain the default status. This is an 
important advantage over alternative models because we can identify the variables 
that best explain the default of BS clients and measure their effects in terms of default 
probability. Second, this model has proven their effectiveness for prediction in many 
different contexts. The default status will be the variable to explain, denoted by y, 
taking values 0 and 1, to represent the no default and the default status, respectively. 
The proportions of default customers in the 24 classes considered, ranges from 0.02, 
for individuals with strong linkage with BS in June 2015, to 0.4507, for freelancers 
with very weak linkage with BS in December 2015. The explanatory variables are 
classified in three blocks. The first block includes variables that measure the use of 
products and services contracted by the customer, as well as some customer descriptive 
variables such as whether the customer is active or retired, among other things. We 
consider 18 categorical variables describing the customer and the use or not of a 
product or service offered by BS, as well as another set of 32 dynamic variables 
describing the changes experienced with respect to the previous observed period, i.e., 
December 2014 in the case of June 2015, and June 2015 in the case of December 
2015, respectively. The second block of explanatory variables includes the available 
resources of the customer in BS. We consider 9 quantitative variables describing the 
resources of the customer, such as payrolls, deposits, etc…, as well as another set of 
9 variables describing the changes experienced with respect to the previous observed 
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period. Due to their high skewness, all the variables in this second block have been 
transformed using a logarithmic transformation. The third block includes 15 network 
variables: 6 variables measuring the proportion of direct neighbors or second-level 
neighbors (that is, neighbors of neighbors) that are default customers in BS, divided 
in companies, freelancers and individuals, and another set of 9 variables describing 
the changes in these proportions experienced with respect to the previous observed 
period. In summary, we considered 80 explanatory variables for each of the 24 models 
constructed. We do not give a full description of all the variables here for easiness in 
exposition and prefer to focus in the most important ones to explain the default status 
once the model parameters have been estimated. 

Call Pr (y = 1|x0) the probability that a given customer with p explanatory vari-
ables x0 = 

� 
x01, . . . , x0p 

�  is in default. Assuming a logistic regression model, the 
odds ratio is given by: 

p �Pr (y = 1|x0) � � 
O (x0) = = exp (β0) exp β j x0 j ,

Pr (y = 0|x0) j=1 

where β = 
� 
β0, β1, . . . , βp 

�  is the vector of parameters of the model and p = 80 
is the number of explanatory variables. In order to understand the coefficients β j of 
the model suppose that we increase the value of a continuous variable x0 j from one 
unit, that is we go from x0 j to x0 j + 1, keeping constant the values of the rest of the 
variables. We consider only in the notation x0 j , as the rest of the explanatory variables 
are fixed. This analysis applies as well to the coefficient of a dummy variable that 
moves from the value zero to one. The change in the odds ratio will be 

� � � � � � 
O x0 j + 1 = O x0 j exp β j 

� � 
where O x0 j + 1 denotes the odds ratio when the variable x0 j increases in one unit. � � � � 
Therefore, if exp(β j ) >  1, then Pr y = 1|x0 j + 1 > Pr y = 1|x0 j , so that we 
conclude that the sign of the coefficient indicates if increasing the value of this variable 
in one unit has a positive or negative effect on the probability that the response is � � 
equal to one. The increase in probability depends on Pr y = 1|x0 j = Pr (y = 1|x0). � � 
Assuming that the starting point is Pr y = 1|x0 j = 0.5, we have 

� � 
� � exp β j � � 

Pr y = 1|x0 j + 1 = � � = PC x j , (11)
1 + exp β j 

� � 
and we will call PC x j the probability change when the variable x j increase in 
one unit with respect to a situation in which this probability was 0.5. In summary: � � 
(i) PC x j > 0.5 means that if x j increases, then Pr (y = 1|x0) also increases; (i i) � � 
PC x j 0.5 means that x j does not have influence on Pr (y = 1|x0); and (i i i) � � 
PC x j < 0.5 means that if x j increases, then Pr (y = 1|x0) decreases. 

To compute estimates of the default probabilities and the probability changes in (11), 
we need to estimate the model parameters β and replace their values in the formulas. 
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Table 1 Percentages of wrong classifications for June 2015 and December 2015 

Group June, 2015 December, 2015 

No default Default No default Default 

Freelancers and very strong 0.04% 1.64% 0.16% 3.29% 

Freelancers and strong 0.02% 1.77% 0.10% 4.22% 

Freelancers and weak 0.07% 1.34% 0.17% 2.46% 

Freelancers and very weak 0.19% 0.70% 0.58% 1.07% 

Companies and very strong 0.04% 1.22% 0.13% 2.35% 

Companies and strong 0.02% 1.21% 0.10% 2.93% 

Companies and weak 0.06% 0.74% 0.15% 1.28% 

Companies and very weak 0.19% 0.63% 0.39% 0.81% 

Individuals and very strong 0.02% 2.58% 0.09% 4.62% 

Individuals and strong 0.01% 2.31% 0.05% 5.65% 

Individuals and weak 0.02% 1.90% 0.07% 3.64% 

Individuals and very weak 0.07% 0.86% 0.23% 0.97% 

However, an initial analysis showed that a large number of the 80 explanatory variables 
considered for each of the 24 logistic regressions, had little predictive power. Thus, 
we considered two alternative ways to tackle the high-dimensionality problem. First, 
we used step-AIC backward deletion (see Hastie and Pregibon 1992), that discard 
variables with low prediction power using the Akaike information criterion (AIC). 
Second, we used Lasso logistic regression that, as explained in Sect. 2.6 maximizes a 
penalized log-likelihood function to shrink non-important parameters toward 0. The 
two methods led to very similar results in all the groups considered and here we 
summarize the results. First, Table 1 shows the proportion of wrong classifications 
with the 12 models obtained for each of the two periods, June, 2015, and December, 
2015. Usually the errors are small so that the models work well. The largest errors 
appear with customers with strong linkage with BS, where the default is usually due to 
a veryminor debts, such as the non-payment of a receipt due to neglect or forgetfulness. 
Then, customers with very good economic conditions can appear promptly as a default 
customer, which makes the classification of these persons very hard. The largest error 
is 5.65%, that corresponds to the default in June 2015, and corresponds to individuals 
with strong relation with the bank. 

Second, Table 2 shows the two most important variables according to the statistic 
(11) for each of the 24models considered.As it can be seen, themost important variable 
is being in default in the previous period (denoted by “Previous default” in the table). 
In all the cases considered, the value of the importance measure in (11) is equal to 
1. Therefore, as one may expect, the fact of being in default 6 months ago appears 
to explain very well whether the currently defaults’ customer status. Additionally, in 
most of the models (23 out of 24), the second most important variable is one of the 
new network variables considered related: having neighbors in the network that are 
default customers. In most of the cases (16) , the network variable is the proportion of 
neighbors or neighbors of neighbors (denoted by “Related with default” in the table) 
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that are default customers, while in the remaining 7 cases, the second most important 
variable is a variable that measures the increment in the proportion of neighbors or 
neighbors of neighbors (denoted by “Increase of related default” in the table) with 
respect to the previous period. Consequently, the proportion of neighbors in default is 
a fundamental factor to explain the customers’ default status. 

We conclude that the introduction of network variables in a statistical model can 
increase its power to provide a good representation of the data. 

4.2 Monitoring customers loyalty 

4.2.1 The problem and the data 

Alarge food supermarket company (DIA)was interested in identifying clients that have 
a moderate or large probability of stop buying in their shops. Having this information, 
the company can use marketing strategies to retain these clients. Also, understanding 
their reason to leave will be helpful to develop strategies to increase the satisfaction 
and loyalty of their customers. Thus, the objective of the study was to provide to the 
company evidence of changes in the purchase behavior of the clients so that corrective 
actions could be taken. Our approach was to identify when a customer has a change in 
his/her pattern of purchases and build a model to estimate how this change modifies 
its probability of attrition or loyalty to the company. Identifying changes in pattern 
behavior is similar to the problem of statistical quality control, where we want to 
identify changes in a system in order to introduce the due adjustments to keep the 
system in a stable state but do not want to apply unnecessary adjustments when there 
is no evidence of change. Therefore, we proposed to combine dynamic variables, 
obtained from the analysis of the time series data of purchases, with the cross-section 
data of the characteristics of the clients, to build a predictive model to estimate the 
probability of a next purchase. 

The available data for each customer are the amount spent each month in one of 
the supermarkets of the company in Spain in the period January 2014 to March 2016 
(M = 27 months) by clients that use a fidelity card to obtain discounts for their food 
purchases. Thus, we also know some personal characteristics of these clients, such 
as sex, age, number of persons in the household, discounted received, and type of 
payment (credit card or cash). We say that a client is active in a given month if the 
amount spent in this month is greater than zero. The initial data base provided for the 
company includes 15, 9 million customers and after cleaning this initial data base by 
deleting obvious outliers, and clients with no activity in the period studied, we end up 
with about N = 8, 3 millions of customers that have at least a purchase in this period. 
This will be the number of time series to be analyzed. 

4.2.2 Splitting heterogeneous data in groups 

Weassume that the probability that a client is active in a givenmonth depends onhis/her 
previous history of buying in the supermarket, summarized in a vector of variables, 
Hi , and of his/her personal characteristics, given by a vector of variables, Ci . The  
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Fig. 5 Three time series of purchases of occasional (1st panel), frequent (2nd panel) and loyal (3rd panel) 
clients 

variables, Hi , will be obtained from the time series of purchases by summarizing the 
dynamic features that can affect the probability of future buying. Figure 5 shows three 
time series of purchases that are representative of three typical patterns of customer 
behavior. The one in the first panel corresponds to a client that is only active in a few 
months, and the purchases amount is in general low. It can be seen in the time series 
plot that there are only three active months in the period and that the amount expended 
goes from zero to 25 euros/month. We will call occasional clients (O) persons that 
broadly buy less than half of the months in the studied period (a more precise definition 
will be done later). The second group of clients corresponds to those that are active in 
most of the months, and have moderate purchase expenses. The client in the second 
panel of Fig. 5 only misses four months, that is buys 85% of the time, and the expenses 
go from zero to 50 euros/month. These will be called frequent clients (F). The series in 
the third panel of Fig. 5 corresponds to a client that is always active, and the purchase 
amount goes from 30 euros/month to 402. The clients that are active all the months 
observed are called loyal clients (A). 

As the frequency of buying seems to be a key variable in the analysis, we assume that 
the i th client, (i = 1, . . . , N ), in each month, m, (m = 1, . . . ,M) has a probability 
pim  of being active this month. We call pi = M 

=1 pim/M to the average probability i 
of being active in the observed period. This probability is estimated as the proportion 
of active months, pi , in the time series of purchases. Figure 6 shows the distribution 
of these estimated probabilities. 
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Fig. 6 Histogram of the proportion of months that the customers have been active 

This histogram is an interesting example of false features in the data that can appear 
when using the default option in many computer programs. Note the relative increase 
in frequency of purchases in intervals with centers separated by 0.15. As the possible 
values of pi are k/27 = 0.037k, for  k = 1, . . . , 27, and the histogram has 20 classes 
with width 0.05, larger than the increase in the values of pi , 0.037, most classes in 
the histogram will include one of the possible values of pi , but seven of then must 
include the sum of frequencies of two values. These happen in intervals 1, 4, 7, 10, 
13, 16 and 19. Apart from this spurious effect, the general form of the histogram 
suggests a mixture of three clusters or populations. First, clients that are active (A) 
every month. They are concentrated in the interval for p = 1 and represent the 17.2% 
of the sample. Second, clients that are frequently active (F), and they can be defined 
as being active at least 60% of the times, that is in agreement with making purchases 
with more probability than the median of the data, (pMed = 0.59). They represent the 
31.4% of the sample. Third, occasional clients (O), that are active less than the 60% 
of the period considered and represent the 51.4% of the sample. 

The data also show that the probability of being active depends strongly on a run 
of inactive months. Figure 7 illustrates this dependency and suggests the importance 
of the length of a period without buying in determining the probability of a purchase 
next month. As expected, this probability of being active after a period of inactivity 
is different for the frequent clients than for the occasional ones, as shown in Fig. 8. 
Also, the distribution of the purchase amount spend in food every month is different 
for the three types of clients. For the A group, the average is 104.20 euros/month, 
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Fig. 7 Probability of being active next month (y-axis) after x months of inactivity 

for the F group is 54.84 euros/month, and for the O group is 31.56 euros/month. The 
distribution is log normal, as shown in Fig. 9. 

4.2.3 Summarizing the time series in dynamic variables 

Two indicators in the purchases of each client are considered to forecast future activity: 
(1) a significant increase or decrease in the amount spent in the supermarket; and (2) 
the number of months without activity. We will say that a client has an inactive run 
of r months when he/she has not made any purchase in r consecutive months. We 
first describe how to identify a level shift in the purchases of a client and then how to 
summarize this information in a set of variables. Second, we analyze the inactive runs 
and propose several variables to describe them. 

We want to identify a level shift in a time series. Let xi,t be the purchase amount 
of the i th client (i = 1, . . . , N ) , and t = 1, . . . , T . As the series are expected to be 
seasonal, and this is confirmed by a peak in the autocorrelation at lag 12 in the series 
of loyal clients, we apply a multiplicative seasonally adjustment by computing the 
average purchase amount on month m for all the clients, xm , the total average purchase 
amount, x , and estimate the seasonal coefficients by the ratio of these averages, Sm = 
xm/x . These coefficients indicate a clear seasonal effect in August and smaller in 
February. The seasonally adjusted time series is zi,t = xi,t/Sm . We analyze the series 
in logs, the variability of the purchases depends on the average level, and call yi,t = � � 
ln zi,t + 1 , where we add one to avoid the problem with zero purchases. In order to 
find level shifts in these series we assume an AR (1)model yi,t = μi + φyi,t−1 + ui,t 
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Fig. 8 Probability of being active next month after some months of inactivity for frequent clients (higher 
curve) and occasional clients (lower curve) 

Fig. 9 Distribution of the log of the purchase amount 
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that (i) is consistent with the autocorrelation observed in most of the time series; (i i) 
allows a linear trend in the time series when φ = 1. We apply to the series yi,t the 
algorithm for level shift detection explained in Peña et al. (2001, p. 156) with the 
following modifications. A window of at least L observations is required to start the 
search by comparing the mean of the residuals after the AR(1) fit in this window to 
the mean of the next L observations. If a significant change with a t test is found, we 
kept the time of the level shift and move to the next observation to continue checking. 
If a level shift is not found, we increase by one the length of first window and continue 
checking. 

As a result of this analysis, we define for each time t = L + 1, . . . , T a set of 
six dynamic variables for each client, Mit : (1) a dummy variable to indicate whether 
an increase in the level of the purchase amount has occurred before this time; (2) the 
number of identified increasing level shifts before this time; (3) the relative amount 
of the last increasing level shift before this time; (4) a dummy variable to indicate 
whether a decrease in the level of the purchase amount has occurred before this time; 
(5) the number of identified decreasing level shifts before this time; and (6) the relative 
amount of the last decreasing level shift. Note that these variables depend on the time 
t because they describe the history of the level shifts before this point. 

We also analyze the number and length of the inactive runs for each client. For each 
inactive run, and a client may have several, we build a set of dynamic variables, Ait , 
depending on the time t in which the inactive run starts. These variables are: (1) a 
dummy variable to indicate whether there exist runs of no activity before the present 
one; (2) the proportion of months with activity before this time; (3) the length of the 
previous run; and (4) the number of inactive runs before this time. In the next section, 
we will see how to incorporate these variables to forecast future buying behavior. 

4.2.4 Estimating probabilities of attrition for each client 

Given the large set of clients to be considered, more than eight millions, and the need 
of a fast response of the company when a change is observed, we want to monitor 
every month only the clients that have shown some change in his purchase behavior 
with some probability p0. The  value of  p0 must be fixed taking into account the cost 
for the company of the two possible errors. In this case, we have selected p0 = 0.75. 
Then, we assume that the next observation, yi,t+1, shows evidence of change if any of 
the two following situations occurs: (1) yi,t+1 = 0 and the probability for this client � � 
of being inactive is smaller than p0; and (2) yi,t+1 − yi /si < − 0.68, that is the 
.25th percentile of the standard normal. For these clients with evidence of change, we 
will compute the probability of leaving the system. 

We will consider first the situation when a significant new inactive observation 
arrives. Let qi (h) the probability that the i th client with a history of purchases sum-r 
marized in the variables Mit  and Ait , and personal variables Ci , remains inactive for 
an additional period of length h after observing an inactivity run of size r . We will 
estimate different models for different values of both parameters, r and h. The  val-
ues chosen are r = 1, 2, 3 and h = 1, . . . , 6, respectively. It is considered that, as 
shown in Fig.  7, after a run of nine (r + h) inactive months the probability of buying 

iis very small, below .1. Suppose we want to estimate q1 (1). As clients in group A 
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by definition do not have inactive months, when this inactivity occurs for a client 
in this group it will be automatically classified in group F. Then we analyze all the 
runs of size one that happen in the period (2 ≤ t ≤ T − 1) and the runs of size two 
starting in t for (2 ≤ t ≤ T − 2) in clients in groups F and O. Clients in group F 
may have one or more runs of these length and clients of group O will probably have 
several. Then, we define a response variable for each run that will be 1 for runs of 
length two and 0 for runs of length one. In other words, if the run is of size one this 
implies that after one inactive month the client makes a purchase next month and 
becomes active, and the response is zero as he/she did not continue inactive. On the 
other hand, for runs of size two after observing a run of size one, the client continues 
inactive next month and the response after a run of size one is one. From this anal-
ysis, we conclude that a first estimator of the average value of q1 

i (1) in the sample 
will be # ( inactive runs of length 2) /# (inactive runs of length 1). The probabilities 
iq1 (1) are estimated with the logistic model 

iq1 (1)  log 
i 

= β1 
  Mit  + β2 Ait  + β3 

  Cit
1 − q1 (1) 

which is estimated in the data set formed by inactive runs of length one and two that 
has as response variable 0 or 1, as defined before, and as explanatory variables the set 
(Mit , Ait ) corresponding at the time the run starts, and the Ci variables that depend 
on the client. A similar process is carried out to estimate qi (h). Then we considerr 
inactive runs of size r + h and r + h − 1, estimate the average value of this probability 
by the ratio 

#(inactive run of length r + h) 
�qr (h) = (12)

#(inactive runs of length r + h − 1) 

and the probabilities qi (h) are estimated with model (12) using the set of data build r 
from inactive runs of size r + h and r + h − 1. 

4.2.5 Results 

A total of 72 logistic models were estimated by ML and Lasso, half of them correspond 
to frequent clients and the other half to occasional clients. The previous run length 
was from one to six, and the future periods without buying were also from one to six. 
Table 3 presents the precision of some of these models for frequent clients where h 
is the length of the predicted future inactivity run and r is the run of the observed 
inactive period. It is shown that the precision of these models decreases with r , is  
easier to forecast with one month of inactivity than with 3 months, and increase with 
h, it is easier to forecast clients that are going to have several months of inactivity, that 
is associated to a change of behavior in a frequent client, that to forecast next future 
month being inactive, that correspond to a more random behavior. 

From the fitted models, we conclude that the probability of buying increases with 
(1) the average amount of the purchases; (2) the variability of the amount of purchases 
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Table 3 Precision of the fitted 
models for frequent clients 

r/h 

1 

2 

3 

1 

0.7 

0.66 

0.67 

2 

0.86 

0.8 

0.77 

3 

0.93 

0.88 

0.83 

4 

0.96 

0.92 

0.89 

5 6 

0.98 0.99 

0.95 0.97 

0.94 0.97 

The values are for different future inactive periods (h) as a function of 
the length of the observed inactive run (r ) 

before the observed run; (3) a significant increase in the amount of purchases; and (4) 
using digital coupons. On the other hand, the probability of being inactive increases 
with (1) a significant decrease in the amount of purchases; (2) the amount of return of 
purchases; and (3) the use of financing of the purchases instead of paying by cash or 
credit card. 

5 Conclusions 

In this article, we have revised some of the changes that the Big Data revolution has 
produced in the analysis of data and in the role of statistics. The automatic generation 
of large amounts of data will increase in the future with the Internet of Things (IoT) 
and the decrease in the cost of sending and storing information. Images and videos will 
play amore central role as data information and statistics and operation researchwill be 
blended with machine learning and artificial intelligence to create prediction methods 
useful to analyze new types of information. Thus, it is important to create spaces to 
facilitate this interchange of ideas, as degrees on data science and research institutes of 
data science, Big Data or data learning, where people with different backgrounds, as 
applied mathematics, computer science, engineering, machine learning and statistics, 
work together. 

The Big Data area is here to stay, and it will speed up learning in all fields of science. 
It is important that universities and research institutes promote joint appointments to 
facilitate interdisciplinary collaboration and stimulate the needed cross-fertilization 
among different fields. The experience of a century of data analysis has shown that 
procedures that have been designed for a specific problem in one field of application, 
as design of experiments in agronomy, censored data estimation in medicine or the 
Kalman filter in engineering, have found general applications in other areas. Thus, it is 
important that data science researchers have joint appointments in applied fields, but 
they must also work together in solving methodological problems that can be useful 
in many other fields of science. 
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